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(1) Hooke’s law states that the force exerted by a spring is given 

by ( ) ( )f iF k x k x x=− ∆ =− −
�

� � �

. This means the more you push or pull on a spring, the 

more the spring presses or pulls back and in the opposite direction of the 
displacement of the spring. Find the work an external agent does to compress the 

spring through a displacement x∆
�

. Then find the work done by the spring in being 
compressed by the same displacement. Note: k is the spring constant measured in 
N/m in the SI system and is positive. You will measure the spring constant in lab 5. 
 
 
 
(2) Suppose a bungee jumper1 (m=100 kg) has bungee cords with a spring constant 
of 40 N/m. The bungee jumper jumps off of a very high bridge and falls for 20 m until 
the bungee cords start to stretch. How far from the point of the jump will the bungee 
jumper be when the bungee jumper finally stops. 
1 Don’t try this. 
 
 
(3) Two masses are arranged on a frictionless table as shown. When the second mass 
has fallen through a distance h, how fast is the system moving? 

 
(4) Show the generalization of energy conservation to include non-conservative 
forces. Then if a mass is lying on a floor with a coefficient of friction µ is kicked so that 
it has an initial velocity v, how far will it go? 
 
 
 
 
(5) Suppose a mass m slides down an inclined plane (of angle θ) with a coefficient of 
friction given by µ. How fast is the mass moving at the bottom of the plane if it falls 
through a vertical height y after being given a theoretical tiny push? 
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(1) Hooke’s law states that the force exerted by a spring is given by 

( ) ( )
spring springspring final initialF k x k x x=− ∆ =− ∆ −∆

�
� � �

. 

Find the work an external agent does to compress the spring through a displacement 

x∆
�

. Then find the work done by the spring in being compressed by the same 
displacement. Note: k is the spring constant measured in N/m in the SI system and is 
positive. You will measure the spring constant in lab 5. 
 
I am trying to be very clear here that the coordinate that appears in Hooke’s law 
really refers to spring compression or expansion and not position in space. The action 
of the force is such that the more you push or pull on a spring, the more the spring 
presses or pulls back and in the opposite direction of the displacement of the spring.  
 
The following words are important and I have chosen them carefully. 
There is something important to understand at the very beginning here: the work 
done on a system and the work done by a system are two different things. If 
work (W) is done on a system by an external agent, we would say that this work was 
positive (so long as F and ∆s are in the same direction) from the point of view of the 
agent (the agent did work) and negative from the point of view of the system (the 

system had work done on it). This is what I’ll call the physics 
sign convention. 
We can determine the work done graphically because the 
work is given by the area under a plot of force-displacement 
graph as I am showing below. I should explain that what this 
plot shows is the amount of force that would be exerted at a 
certain value for the compression of the spring with the 
spring initially uncompressed. 
Looking at the diagram, W1 is the work required to compress 
the spring up to the amount of compression that I’ve called 
the “first compression.” W1 is equal to the area under the 

curve which is the grey shaded area. It is given by: 

[ ][ ]W x x F F= ∆ −∆ −1
1 1 0 1 02

 

But if the spring obeys Hooke’s law then we have: 

[ ] [ ] ( )F F F k x x k x− = = ∆ −∆ = ∆1 0 1 1 0 1  

So the quantity W1 is given by: 

( )W k x= ∆
21

1 12
 

where I have assumed the x0 and F0 are both zero. Now to calculate the work required 
to compress the spring from X1 to X2, you will need again to calculate an area but this 
area is a bit more complicated here. If fact, we have: 

[ ][ ] [ ][ ] [ ] [ ] ( ) ( )W x x F F x x F F kx x x k x x k x k x= ∆ −∆ − + ∆ −∆ − = ∆ −∆ + ∆ −∆ = ∆ − ∆
2 2 21 1 1 1

2 2 1 1 0 2 1 2 1 1 2 1 2 1 2 12 2 2 2
 

The total work that the agent had to do to make the initially uncompressed spring 
have a compression given by ∆x2 is then: 

( )by
agent
on
spring

W k x= ∆
21

22
 

Also notice: there is work done but no “change in work.” 
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 This means that it is improper to use an expression such as this: 

W ....∆ =  

Instead, you must refer to work as simply W. 
 
 
 
Now, suppose a mass m is placed on the compressed spring. After the spring is 
released, how fast will the mass move when it passes through the equilibrium 
(uncompressed) position of the spring? 

Answer: Apply conservation of energy: 
i f

i f

U kx  U

K  K mv

= =

= =

21
2

21
2

0

0
. 

This gives: k
i i f f mU K U K kx mv v x+ = + ⇒ + = + ⇒ = ±2 21 1

2 2
0 0 . Which of the signs is 

chosen depends upon the direction the spring was initially compressed. 
 
As a modification, suppose the spring were pointed upward. What happens then? The 
answer is not so simple mathematically but can still be solved: 

k
mkx mgx mv v x gx− = ⇒ =± −2 2 21 1

2 2
2 . 

This is the velocity that the mass has at the instant it would leave the spring. 
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(2) Suppose a bungee jumper1 (m=100 kg) has bungee cords with a spring constant 
of 40 N/m. The bungee jumper jumps off of a very high bridge and falls for 20 m until 
the bungee cords start to stretch. How far from the point of the jump will the bungee 
jumper be when the bungee jumper finally stops. 
1 Don’t try this. 
 
We have already seen that work done on a system can be calculated, and you need to 
be a little bit careful about specifying exactly what is doing the work in order to get 
the sign of the work represented correctly. 
 
Energy is conserved. This means that gravitational springU U K∆ +∆ +∆ = 0 . Notice that we 

are able to ignore the details of the velocity and kinetic energy here. In reality, wind 
resistance will slow the jumper until a “terminal velocity” is obtained (this is what 
happens to sky divers). On to the problem: we calculate each of the changes: 

gravitational f i fU mgy mgy mgy∆ = − =  

Now the next thing to consider is this: the final position of the jumper does not 
correspond to the expansion of the cord. Since the coordinate in Hooke’s law strictly 
refers to the spring expansion, we need to reflect this in the potential energy of the 
spring. 
Let us call the zero in potential energy the unstretched position of the cord. The initial 
position of the jumper is then +20. 
Let us calculate each of the terms required for the energy equation. 
(1) Since the jumper is initially at rest and at the end the jumper is at rest: 

f iK K K∆ = − = 0  

(2) The change in gravitational potential energy is going to be given by: 

( ) ( )g fU mg y mg∆ = − 20  

where yf is the final position of the mass. 
(3) The change in potential energy of the spring is given by: 

( ) ( )s f fU k y k y∆ = − =
2 21 1

2 2
0  

Again, yf is going to need to be a negative quantity as this problem is set up. 
 
If we put everything together, we then have: 

mg mg
f f f k kmgy mg ky y y− + = ⇒ + − =2 402 21

2
20 0 0  

mg/k=24.5 
We can now use the particular numerical values for this problem: 

( ) ( ) .
f f f

. m
y y y

. m

− ± − − − ± + − ± − ±+ − = ⇒ = = = = =
−

2
49 49 4 9802 49 2401 3920 49 6321 49 79 5

2 2 2 2

15 3
49 980 0

64 3
 

Now as the problem has been set up, the physically valid solution is the one with the 
negative coordinate so we have: 

fy . m=−64 3  

We can check our work by ignoring the initial 20 m. In this case, the original equation 

becomes mg

kmgy ky y  or + = ⇒ =− =− =−22 19601
2 40

0 49 0 . 

In this case, the fact that y is negative is implied by our change in the gravitational 
potential. Then answer: the jumper stops 84 m below the bridge (don’t forget the 
original 20). Whew!! 



 Physics 210: Worksheet 11 Name _________________ 

 

(3) Two masses are arranged on a frictionless table as shown. When the second mass 
has fallen through a distance h, how fast is the system moving? 

 
The solution to this is shown as an animated gif in the class links: 
http://www.compchem.org/~shutton/animations/energy1.gif 
 
However, I also now want to write out the solution. 
Let’s call the mass on top of the table m1 and the hanging mass m2. Energy is 
conserved so we have: 

gU K∆ +∆ = 0  

We need to calculate each of the terms. I will call the y coordinate at the top of the 
table zero. Thus: 

( )
( ) ( )

g m gh

m m

U m gy m gh m gh
m gh m m v v

K m m v +

∆ = − =− − =−
⇒− + + ⇒ = ±

∆ = +
2

1 2

2 2 2 221
2 1 22 21

1 22

0 0
 

The particular sign for the velocity really depends upon the mass that you are asking 
about: for the first mass, positive. For the second mass, negative. 
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(4) Show the generalization of energy conservation to include non-conservative 
forces. Then if a mass is lying on a floor with a coefficient of friction µ is kicked so that 
it has an initial velocity v, how far will it go? 
Solution: 
The generalization of the equation expressing energy conservation is to include a 
term reflecting the loss of kinetic energy due to non-conservative forces, NCK∆ . The 

more general form of the equation then becomes NCK K U∆ =∆ +∆ where the subscript 

c means “conservative”. The only trick to using this equation is to be able to calculate 

NCK∆ . This is calculated from the work-energy theorem: 

NC by
system
against
NonConservative
forces

K work∆ =  

Since the only non-conservative force we’ll be using in this course is friction, we can 

say that mostly for us, this calculation reduces to NCK f x∆ = •
�
�

. Let’s see how to do 

this for the given example: 

f i

f i

NC

U U U

K K K mv

K f x mgx

∆ = − =

∆ = − = −

∆ = • =−µ

21
2

0

0
�
�

 

We put this together to get:  

v
gmgx mv x µ−µ =− ⇒ =
221

2 2 . 
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(5) Suppose a mass slides down an inclined plane (of angle θ) with a coefficient of 
friction given by µ. How fast is the mass moving at the bottom of the plane if it falls 
through a vertical height h after being given a theoretical tiny push? 

Solution: It is best to draw a free body diagram here 
because you need to find the frictional force.  If you do 
this, you will find  

N=mgcos(θ) 
so that the frictional force is given by  

ˆf mgcos( )i=−µ θ
�

 

where I have rotated coordinates down the plane. The 
distance the mass moves down the plane is related to the 
distance down the plane (x) by: 

h xsin( )= θ  
so that  

h
sin( )x θ= . 

 
The work against friction is given by  
 

mgcos( )h
NC sin( )K Nx mghcot( )θ

θ∆ =−µ =−µ =−µ θ . 

The change in potential energy is  

f iU U U mgh∆ = − =−  

and 

f iK K K mv∆ = − = 21
2

 

We put all this together: 

NCK K U mghcot( ) mgh mv∆ =∆ +∆ ⇒−µ θ = − + 21
2

. 

We can simplify and solve this for v: 

ghcot( ) gh v v gh( cot( ))−µ θ = − + ⇒ = −µ θ2 21 1
2 2

1 . 

If we carry this a bit further, we find the solution for v:  

v gh( cot( ))= −µ θ2 1 . 

You might wonder how careful you need to be when making up problems like this. 
Look at the thing under the square root: if µ=0, we are in the frictionless case and v 
correctly reproduces that for free-fall (you ought to be able to show this yourself 
please try!). Problems will happen when cot( ) cot( )  or tan( )=µ−µ θ = ⇒ θ = θ µ11 0 . You’ve 

seen this before! For tan(θ)<µ, the problem won’t work since the mass won’t slide 
with a constant velocity. 


