
r21 Physics 220: worksheet 17->>16

(1)  Time  dependence  of  a  RL  circuit.  You  know  that

Faraday's  law  says  ℰ=−L ΔI
Δ t

.  Suppose  you  have  a

series  RL  circuit  as  shown.  At  t=0,  leave  s2  open  but
close s1. The question is how does the current through
the circuit behave with time?
Solution: The current begins to initially flow through
the  circuit.  From  Faraday’s  law  and  Lenz’s  Law,
due to the fact that a time rate of change of the
current induces an emf which will tend to oppose

the change, we will have a "back" emf which tends to oppose the emf from
the battery. This emf is given by

VL=−L Δ I
Δ t

.

Now apply Kirchoff's law: we get 
V−IR+ VL=0 .

Remember the emf produced by the changing current through the inductor is in the
opposite sense, hence the + sign.  So we then have 

V−IR−L Δ I
Δ t

=0 .

 Let x≡
V
R

−I . Then, we can write 

x+
L
R

Δx
Δ t

=0 .

If we let τ=L /R , then this is even simpler:

x+τ
Δx
Δ t

=0 .

This equation can be rearranged to appear in a more familiar form:
Δx
x

=
−Δ t

τ ⇒ln(
x
x0

)=−t / τ

so long as you start time at t=0. You know what the solution to this is, namely a natural
logarithm. We can exponentiate this to give x=x0e−t / τ . If we now replace x, we find
that the current as a function of time is given by 

I(t)=V
R

(1−e−t / τ )

where τ=
L
R

 and V is the emf from the battery.

Note that the maximum value of the current occurs at an infinite time and is given by

Ohm's law: I=ℰ
R

 where the emf is that produced by the battery.
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 (2)  Suppose  that  at  some  long  time  after  s1  is
closed, you obtain the theoretical maximum current

through the circuit  I=ℰ
R

 .Now, leaving s1 closed,

close switch s2. Describe the time dependence of the
current through the circuit.

Solution:  Application  of  Faraday’s  and  Lenz’s  laws
would say something like this: changes in the stored
magnetic energy in the inductor will provide a source
of emf. We’ve immediately switched off the source of

current  to  the  inductor.  That  means  that  the  flux  is  going  to  be  changing  in  the
inductor. According to Lenz’s law, the inductor is going to do everything possible to
keep this from happening (but, for normal (pun here!) circuit elements, of course, our
poor inductor is fighting a lost cause). Thus, the inductor will induce an emf which
will result in a current which is in the same direction as the current was right
before it was shut off by switch S2. (These words were chosen very carefully). That
means that we have by a straight-forward brute force application of Kirchoff's laws:

VL−IR=0
Although many texts say this differently, I contend that this is the way it ought to look.
However,  note  that  the  +  and  -  notations  in  the  picture  above  might  need  to  be
changed since there is no longer a battery to reference the positive and negative ends
of the inductor. In any event, from Faraday's law, we then have (walk in the direction of
I across the inductor and the resistor):

VL=−L Δ I
Δ t

−L Δ I
Δ t

−IR=0

We can make this simpler in appearance to what we had before: 

L Δ I
Δ t

+ IR=0

Now, as before let =L/R and rearrange to give 
Δ I
Δ t

=−I/ τ

This can be rearranged to give a more familiar form:
Δ I
I

=−Δ t / τ⇒ln(
I
I0 )=−t/ τ
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If you assume that you close s2 at t=0, then this appears as 
Δ I
I

=−t /τ   You recognize

that this is a logarithmic form: ln(
I
I0 )=−t/ τ  . If you exponentiate this, then the result

is 
I=I0e

−t / τ .

If I0=
ℰ
R

 , then I0=
ℰ
R

e−t / τ .
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(3) Consider the circuit shown. Initially the capacitor has a charge
Q. At t=0, the switch s is closed. Describe the time dependence of
the circuit.
Solution:
The conventional current will act in such a way that charges are
taken from the positive plate,  moved through the inductor,  and
placed on the negative plate. According to this, then we have that
the capacitor is acting as if it were a source of emf. I want to do
this problem with out ever crossing the capacitor.

Application of Kirchoff’s laws then gives:
Vc−VL=0

or, more clearly, we have:
Q
C

+L Δ I
Δ t

=0

Non-calculus students will need to remember that this gives the solutions for 

I=ΔQ
Δ t

are
I(t)=Imsin (ω t+ ϕ)

where

ω=
1

√LC
The charge difference across the capacitor is given by:

Q(t)=
−Imcos (ω t+ϕ )

ω

At t=0, we have then

Q(0)=Q0=
−Im
ω ⇒Im=−ωQ0

This suggest for this problem, if we would write:
Q(t)=Q0cos (ω t+ ϕ )

Then

I=dQ
dt

=−ωQ0sin (ω t+ ϕ )  with Im=ωQ0

and, we can find the potential across the inductor as:

V=−L Δ I
Δ t

=ωLQ0cos (ω t+ϕ ) .

Energy “sloshes” between an electrostatic energy and a magnetostatic energy.  How
this happens is this:

At any time, the energies are:

UM=
1
2

LI2=
L Im

2

2
sin2 (ω t+ ϕ) UE=

Q2

2C
=

Q0
2

2C
cos2 (ω t+ ϕ )
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It’s possible though to eliminate L from the discussion by:

L=
1

ω
2C

This then gives: 

UM=
1
2

Lω
2Q0

2sin2 (ω t+ ϕ )=
1
2

Q0
2

C
sin2 (ω t+ ϕ)

Ok, now add the two to obtain the total energy which is constant in time:

U=UE+ UM=
Q0

2

2C
.

This is a “tank” circuit, the resonance of which provides the basic circuit for radio
tuners.

(4) The RLC circuit. Suppose that at t=0, the capacitor has
a total charge Q0. Then, the switch is closed. Describe the
subsequent behavior of the circuit.

Students will  need to remember that if R is fairly small,
then the charge across the capacitor as a function of time
is given by

Q=Q0e
−Rt
2L cos (ωd t )  

where

ωd=√ 1
LC

−( R
2L )

2

It  is  pretty interesting that the peak frequency is  less than the pure LC resonance
frequency and is worth noting. This is easy enough to obtain from Kirchoff’s laws but it
is now time to move on.


