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Faraday’s Law of Induction

ℰ=−
ΔΦM

Δ t
non calculus

(1) Suppose you have the following situation: a conducting bar of length w is moving
with a velocity v(t). The bar is lying on conducting
rails.   (a)  find  the  current  in  the  circuit  when
v(t)=v (v is constant) and (b) find the current in
the  circuit  when  the  bar  undergoes  a  constant

acceleration a. (c) What about when x=
1
2

at2  ?

Solution:  Suppose  the  bar  is  moving  with  a
constant velocity v. Then

 
Δ ΦM

Δ t
=Bvw   

so the induced emf has magnitude  ℰ=Bvw  . This produces a current in the circuit
which is given by

 I=Bvw
R

 

since  by  Ohm’s  law,  ℰ=IR .   Suppose  however  the  bar  underwent  a  constant
acceleration a. Then

 x=
1
2

at2

and the instantaneous velocity is  at . This gives rise to an emf given by ℰ=Batw

and in this case, the current would be I=Batw
R

. In this case, of course, the current

would show a linear increase with time. Note that this problem works "the other way
around" also.
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(2) Suppose a loop of wire of area A is rotating in a uniform magnetic field about an
axis through the center of the loop and perpendicular to the magnetic field. Calculate
the time dependence of the emf developed.

Solution: The magnetic flux is given by 
ΦM=B⃗⋅A⃗=BAcos (θ )  

where   is the angle between B and A. This angle, however, is so that  =t where
=2f. Thus, the magnetic flux varies in time as

 ΦM=BAcos (ω t )  
and so

 
Δ ΦM

Δ t
=−ωBA sin (ω t ) . 

According to Faraday's law, then the emf is given by 
ℰ=ωBAsin (ω t ) . 

You can carry this a bit further by letting
 ωBA=ℰmax  

so you can say 
ℰ=ℰmax sin (ω t ) . 

Now show 2 other ways to produce an emf.

We need to introduce a very important concept now, that of inductance (L). Inductance
is defined through Faraday's law and there are two types of inductance: namely self
inductance (L) or mutual inductance (M). We'll talk about M later. Suppose we have a
coil of N turns and each turn has a magnetic flux M,1.  According to Faraday's law:

ℰ=−N
Δ ΦM,1

Δ t

We want to make a proportionality between the flux in the coil and where it comes
from (namely, the fact that the coils are carrying a current). We’ll call the constant of
proportionality the inductance of the circuit.  Thus we can write

ℰ=−N
Δ ΦM,1

Δ t
=−L Δ I

Δ t
We see then that we could write in this special case the inductance as

L=
NΦM ,1

I
or, in a more general sense, we could write something about a "self-induced" emf:

L=
−ℰ

[ Δ I
Δ t ]

.

which shows more clearly the units of L are V/(A/s) = 1 Henry (H).

One way to measure inductance is this: connect a voltmeter across a coil, then change
the current input into the coil from 0A to 1A in a time of 1s. If you have an inductance
of 1 H, then you should measure a potential difference across the coil of 1 V.
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(3) Calculate the inductance of a uniformly wound solenoid with N turns and length w
and cross sectional area A. Assume w is long compared to the radius and that the core
of the solenoid is in air.

Solution: We have found the magnetic field inside the solenoid is 

B=μ0nI=μ0[ N
w ]I .

 We can now find the magnetic flux through each turn to be 

ΦM=BA=μ0[ NA
w ]I .

 We can now find the inductance from the first definition of inductance:

L=
NΦM

I
=

μ0N
2A

w
=

μ0 (nw )
2A

w
=μ0n2 [Aw ]=μ0n

2 [volume ]

Suppose the solenoid had A=4x10-4 m2, N=300 and w=0.25m. Then L=1.81 x10-4 H.
Now if you decrease I at the rate of 50000 A/s, this will induce an emf of 9.05V.

Be  very  careful  how  you  turn  off  your  magnets!  It  is  easy  to  destroy
controlling circuitry!
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(4) Magnetic energy. Assume that we connect a current source to an inductor of self-

inductance L and increase the current from zero at a constant rate 
Δ I
Δ t

. At any point

in time there will  be an emf generated due the Faraday's law. In a sense, then the
product ℰI [Δ t ] will be equal to energy, which is, in fact, a magnetic energy stored in
the inductor when it carries a current I. On the face of it, it would seem that this energy
would be given by

 UM=L [ Δ I
Δ t ] [ IΔ t ]=LI [Δ I ] . 

The result is actually that to establish a current I in the solenoid, the amount of stored

energy is equal to UM=
1
2

L I2  . This magnetic energy is as important for understanding

magnetism as the electrostatic energy UE was to understand electrostatics.

Suppose the solenoid in problem (3) has a current I through it. Calculate the magnetic
energy and the magnetic energy density.

Solution: we had for the solenoid that 
L=μ0n2 [Aw ]  

so when the solenoid carries a current I, it holds an amount of magnetic energy equal
to 

UM=
1
2

μ0n2 I2 [ Aw ] .

 But B=μ0nI  so we find that the magnetic energy is given by

 UM=
1
2 [B

2

μ0 ] [ Aw ] . 

Thus the magnetic energy density is given by 

uM=
UM

Aw
=

B2

2μ0

. 

This  is  as  important  of  a  result  as  was  the  electrostatic  energy  density

uE=
1
2

ϵ0E2  and it has SI units of J
m3

.
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(5)  Displacement current: Maxwell's correction to Ampere's law. Consider the
capacitor shown below.  The capacitor is charging with a
current  I  and  if  we  apply  Ampere's  law,  then  we  can
calculate the magnetic field easily enough to be

B⃗=
μ0 I
2πr

Now suppose we changed
the  loop  to  look  like  that  shown  to  the  right.  Here,
According to Ampere's law then Ic=0 so B must be zero.
With  the  same  situation,  we  see  that  two  different
values for the magnetic field result.

Let's see how Maxwell fixed this problem.

We know that  a  changing  magnetic  flux produces  an
emf which is closely related to an electric field (which, granted, is different from other
electric  fields  since  it  does  not  arise  from  charges,  among  other  things).  It  is  a
reasonable guess that a changing electric flux would produce a magnetic field.  The
correction term needed is of the form

Idisplacement=ϵ0 [Δ ΦE /Δ t ] non-calculus

The needed correction to Ampere's law is then
∑

curve

B⃗i⋅Δ s⃗i=μ0( Ic+ Id ) (non-calculus version)

The d stands for the "displacement current" which is only very important when dealing
with ac circuits. This is why we could use Ampere's law for magnetostatic problems:
Id=0 for static situations.
I have made an animation which shows the deformation of this Amperian Loop.


