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(1) Apply Ampere's law to find the magnetic field from a long wire carrying a current I.

(2) Suppose a wire has a radius a, and current I is uniformly distributed over the area
of the wire so that J=I/(pa2). Find the direction and magnitude of the magnetic field
both inside and outside the wire.

(3) Suppose that an infinite plane is carrying a current of  surface  current
density Js. which is a current per unit length as measured along the z-direction
Find the direction and magnitude of the magnetic field on both sides of the
plane.

(4) Consider the current loop shown. A current I flows in the circuit. Find the
torque on the current loop as a function of angle. The circuit is permitted to
rotate about the axis shown.

(5) A rectangular coil of dimensions 0.054 m x 0.085 m consists of 25 turns of wire.
The coil carries a current of 1.5x10-3 A. Assume that each turn encloses the same area
A. (a) Calculate the magnetic moment of the coil and (b)if a magnetic field of 0.55 T is
applied parallel to the plane of the loop, calculate the torque on the current loop.(c)
Calculate the magnitude of the torque when the magnetic field makes angles of 600

and 00 with m.
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This worksheet covers 2 important topics: (1) applications of Ampere’s law and (2)
magnetic moments. Ampere’s law is defined by:

Non-calculus: ∑
path

segments
S i

B⃗⋅dS⃗i=μ0 Ic  

This  permits  calculation of  the magnetic field from currents possessing fairly  high
degrees of symmetry. The first example that we have seen application of Ampere’s
law was that of the magnetic field external to a wire carrying a current I. In that case,
we found the magnetic field was given by:

B⃗=
μ0 I
2πr θ̂ .

Let’s look at the same problem but now in more detail. Suppose the wire had a radius
a and the current was evenly distributed over the cross sectional area of the wire.
This allows us to define the magnitude of the current density in the wire as:

J= I
πa2 .

Now if we wanted to properly assign the vector quantity to this, we need to look at
the cross section of the wire itself. For our present purposes, let the wire be directed
in the  + ẑ  direction and also let the current go in this same direction. The vector

current density is then given by:
J⃗= I

πa2 ẑ
It is important to remember the units of this current density:

J[ A
m2 ] .

Now we choose again the same type of Amperian loop with a radius
r<a. By symmetry, we then have:

Non-calculus: ∑
segments

B⃗⋅S⃗=B (2π r )=μ0 Ic

Note: μ0=4πx10−7 Tm
A .

The different part of this problem involves the fact that with the Amperian loop inside
the wire,  we no longer  enclose the entire  current  of  the  wire  with  our  loop.  The
current cutting through the wire is given by:

Non-calculus: Ic= J⃗⋅A⃗=J (π r2 )=I r2

a2

We then have the magnetic field: B⃗=μ0

I r2

a2

2πr θ̂=
μ0I r
2πa2 θ̂ .

Calculus note: if J is not uniform across the diameter of the wire, then you can not
necessarily take J outside the integral above. In both cases, the direction comes from
the right hand rule for magnetic fields. Here is a slightly more complicated version of
this problem: suppose that this is not a solid cylinder but instead a hollow cylinder,
with an inner radius d. You will need to define your current density so that on the
ultimate inside, there is no current flowing.
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The magnetic moment

Suppose in a planar configuration, current is flowing around a closed area. We can
right now, for simplicity, imagine a piece of wire bent into a circular path which is
lying in the x-y plane. If the current is circulating counter-clockwise around the loop,
the magnetic moment of the current loop is defined by:

μ⃗=I A⃗
where the normal to the area points (in this example) in the +z direction. The right
hand rule for determination of the direction of the current loop says to let your fingers
curl around the area in the direction in which the current flows. Your thumb points in
the direction of the magnetic moment.

I will show you below in a problem that when a magnetic moment is placed in an
external magnetic field, a torque will be exerted upon the current loop which is given

by:
τ⃗=μ⃗⨯B⃗ .

Note: it’s not exactly the magnetic field that’s exerting the torque... it’s the action of
the current in the magnetic moment producing a magnetic field that does this. As the
loop begins to rotate, an entirely new can of worms begins to open and an opposing
current will be induced in the loop. These details, however, will need to wait further
exploration. For now, we’ll not worry about this effect.

In  fact,  it  is  possible  to  talk  about  the work  that  happens  when this  torque  acts
through an angle. In this case, suppose that the magnetic moment was initially given
by:  μ⃗=∣⃗μ∣ŷ and  the  magnetic  field  was  given  by  B⃗=∣B⃗∣ẑ .  The  torque  on  this
magnetic moment would be given by: τ⃗=∣⃗μ∣∣⃗B∣[ŷ⨯ẑ]=∣⃗μ∣∣⃗B∣x̂ .

The change in angular momentum is in the +x direction in this case. This means that
the magnetic moment would begin to rotate from the y-axis towards the z-axis

(remember the right hand rule for angular momentum from last semester to convince
yourself of this fact). I have an animation showing this alignment.  The potential

energy associated with a magnetic dipole moment in a magnetic field can be
expressed as: U=−μ⃗⋅B⃗ .

For non-calculus people, there is a calculus proof however I think you will just need to
accept that this represents the work done.

The work done to orient the loop from an angle θ=900 to an angle  is given by: 
W= ∫

θ=900

θ

τdθ=∣⃗μ∣∣⃗B∣ ∫
θ=900

θ

sin(θ)dθ=−∣⃗μ∣∣B⃗∣cos [θ ]90
θ =−μ⃗⋅B⃗=U

This expression (although somewhat misleading) is useful in the thermodynamics and
quantum mechanics of  magnetic dipoles.  This  says that the potential  energy gets
lower as the dipole aligns with the magnetic field.
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(1) Apply Ampere's law to find the magnetic field from a long wire.
Along a circular path at a radius r from a current element I, B is given by 
Non-calculus: ∑

path
segments

B⃗⋅S⃗=μ0 Ic  

where Ic is the current passing through the area enclosed by
the  path.   In  order  to  successfully  apply  this,  you  must
consider a region where B is parallel to or perpendicular to the
portion of the curve. The curve ultimately must form a closed
path.

Consider an infinitely long wire of  negligible radius. Let the
wire  carry  a  current  I.   Use  the  right-hand-rule  for

magnetic fields  to find the direction of the magnetic field around the wire. Then,
apply Ampere's law to obtain the magnetic field. The answer is B⃗=

μ0Ic
2πr θ̂ .

(2) Suppose a wire has a radius a, and current I is uniformly distributed over the area
of the wire so that J=I/(a2). Find the direction and magnitude of the magnetic field
both inside and outside the wire.
Solution: Inside the wire, B(2r)= 0Ic and the current inside the wire is Ic=I( r

a )
2

. 
How do I know this?

non-calculus: Ic=∑
area
bits

J⃗⋅Δ A⃗= I
πa2 [π r2 ]=I( r

a )
2

If the path is outside the wire, Ic=I. Solve these to get the dependencies for B.

(3) Suppose that an infinite plane is carrying a current of surface current density Js.
which is a current per unit length as measured along the z-direction Find the direction

and  magnitude  of  the  magnetic  field  on  both  sides  of  the
plane.. 

A note about the current density defined in this problem: The
current density here has units of  A

m  and can be thought of
as the limiting case of an infinitely wide ribbon cable. I’ll use
the special s subscript to designate that this is a different type
of current density. This problem is of great importance to help
form a model for electromagnetic waves.

Solution:  on the square path  of  length L  and width  W, B is
uniform (by symmetry) and in the direction shown (by RHR#2).

On the sides, B and L are in the same direction while on the sides marked W, B is
perpendicular to W. So then 2B=0Ic. Ic is given by JsL.  We can now solve for B which
is given by B=0Js/2. Note that this is uniform meaning that no matter how far you are
from the plane, you get the same value.
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(4) Consider the current loop shown. A current I flows in the circuit.
Find the torque on the current loop as a function of angle. The circuit is
permitted to rotate about the axis shown.

Solution:  the  net  magnetic  force  on
this current loop is zero since the loop

is closed. However, in general the torque is not zero.
Looking at a sideways view shows the torque most
clearly: The brown arrows shows the Lorentz force.
As  I  have  this  drawn,  on  the  portion  marked  “I”,

B⃗=Bx̂:IL⃗=−Ib ŷ , so that the force on this portion is F⃗1=−IbB (ŷ⨯x̂ )=+ IbB ẑ . On the
portion marked “II”, the force is then given by: F⃗11= IbB (ŷ x x̂)=−IbB ẑ . There is thus
no net force on the circuit. There is, however a torque on this circuit. We can imagine
that the circuit is pivoted about its center. The magnitude of the total torque about
this  pivot  is  then given  by:  τ=I(a

2 )bB+ I(a
2 )bB=I (ab )B=IAB  where  A  is  the  area

enclosed by the loop. We want to express this in terms of the magnetic moment. You
can note that the direction of the torque above is in the +y direction and this is also
the direction of the change of angular momentum. See

 http://www.compchem.org/~shutton/Courses/FA15/250/pdf/Ows17.pdf  
for  a review of  these topics.  We can write  the magnitude of  this  in  terms of the
magnitude of the magnetic moment as  τ=μ B . Note that if the magnetic moment
points in the +z direction, then since  ẑ⨯x̂=ŷ , we should write the torque more
generally to incorporate any angle between the two vectors as  τ⃗=μ⃗⨯B⃗ .  This is,
then the torque on any planar current loop in a uniform magnetic field.
Note1: The direction of a planar magnetic moment is given by another right hand
rule: curl your fingers in the direction of the (conventional) current around the loop.
Your thumb points in the direction of the magnetic moment. I have an animation of
this.

Note 2: The magnitude of the torque can be written as: τ=μ Bsin (θ )   where  is the
angle between B⃗ and μ⃗ .

(5) A rectangular coil of dimensions 0.054 m x 0.085 m consists of 25 turns of wire.
The coil carries a current of 1.5x10-3 A. Assume that each turn encloses the same area
A. (a) Calculate the magnetic moment of the coil and (b)if a magnetic field of 0.55 T is
applied parallel to the plane of the loop, calculate the torque on the current loop.(c)
Calculate the magnitude of the torque when the magnetic field makes angles of 600

and 00 with .
Solution: (a) The magnetic moment of the coil is given by 

μcoil=NIA=(25) (0.085x 0.054 ) (1.5x10−3 )=1.72x10−4 Am2 ( or J/T ) .
(b)  Applying the magnetic  field parallel  to the plane of  the loop means that  it  is
perpendicular to the magnetic moment of the loop. Thus the torque is given by

τ=μ Bsin (θ )=9.46x10−5 J (but a better unit of torque is, of course, Nm).
(c) at 600, =9.46x10-5sin(60)=8.19x10-5 Nm. At 00, the torque is zero.

http://www.compchem.org/~shutton/Courses/FA15/250/pdf/Ows17.pdf

