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(1) A proton mp=1.67x10-27kg is moving with a velocity v=0.01c (c is the speed of
light, c=3x108 m/s) at right angles to a magnetic field which is 10 T in strength.
What is the radius of the orbit of the proton. (ignore radiation effects here). The
charge on the proton is q=+1.602x10-19C.

(2) A wire has a length of 0.78 m and carries a current of 0.35 A in the +y direction.
The wire experiences an upward force  of  0.10 N. What is  the direction  and the
strength of the magnetic field which is at right angles to this wire?

(3)  Show  that  a  closed  loop  carrying  a  current  I  in  a  uniform  magnetic  field
experiences no net external force.
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The fundamental observation one makes regarding a magnetic field is that
a moving electron can be directed so that it is deviated from a straight-
line path when it encounters a magnetic field.

The SI unit of magnetic field is a Tesla (T)
I’ll show you later how you can measure and define this unit.
The problem of magnetic fields is a 3-dimensional problem. We need to be able to
represent the magnetic field vectors coming into or out of the plane of a surface.
Unicode characters: u2299 = ⊙ and u2295=⊕ and u2297=⊗

⊗ represents a vector going into the screen 
⊙ represents a vector coming out of the screen.

The observation:

A charged particle moving at right angles to a magnetic field will be deviated by an
apparent force which acts at right angles to the instantaneous velocity.

The other two possibilities can be seen by “going behind” the plane of the screen.

We can represent this force by use of the cross product.

For a charge q in motion, the vector “magnetic force” on the particle is
Note: the unicode symbol for ⨯ is “control shift u 2a2f”

F⃗=qv⃗ ⨯B⃗
where v⃗  is the vector velocity and B⃗  is the magnetic field in the region of the
particle.

This force is called the Lorentz force.
It  is  important  to  note  that  only  components  of  the  magnetic  field  which  are
perpendicular to the velocity produce this force. Parallel components will have no
effect.
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Let’s do an example:
Suppose a particle (Q=+1 C) has a velocity given by: v=v0 x̂  and it experiences a

uniform magnetic field given by B⃗=B0 ŷ  . What is the force acting on the particle?

The cross product is defined by: x̂⨯ ŷ=ẑ  and ŷ⨯x̂=−ẑ .

Here, then we have: F⃗=qv0B (x̂⨯ ŷ )=qv0Bẑ .

You will want to sketch a picture of what happens. In short, the force will always be
perpendicular  to  this  velocity  and  this  type  of  force  produces  uniform  circular
motion. From Newton’s law, we can calculate the radius of orbit for the particle:

F=m v2

R
for  a  particle  undergoing  uniform  circular  motion.  We  then  have  from  the
fundamental observation the fact that ∣⃗F∣=qv B .
Thus, the radius of orbit is given by:

qvB=m v2

R
⇒R=m v

qB
.

In a more advanced study of electricity and magnetism, you would find that when a
charge undergoes an acceleration, power must radiate from the charge. This particle
would not go in a circular path forever, therefore. However, we won’t pursue this
aspect further in our course.

What happens to current in the presence of a magnetic field?

Now,  imagine positive  charges  constrained to  move along  a  straight  line  in  the
presence of a magnetic field. If you like, you can say that a wire can cause this to
happen. Incidentally, I would imagine that for a high enough current in a wire which
is placed at right angles to a magnetic field, there might be some possibility to eject
moving  electrons  from  the  surface  of  the  wire,  but  I  am  not  aware  of  any
experiments which report this.

What will happen is this: the positive charges (moving) in the wire will experience a
force due to the magnetic field. 

We don’t usually (i.e. ever) actually see protons moving so actually the fundamental
observation probably ought to be the observation of what happens to a current in
the presence of a magnetic field.

Here  is  a  second  subtle  point:  although  a  wire  might  have  a  current  in  it  and
although we did define the current in terms of the motion of charged particles, in
reality the particles in the wire are not moving very far. How a current is transferred
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through the wire is actually due to a slight motion of electrons at one end of the wire
transmitting the electric force through the wire.

Suppose a wire is carrying a current (the conventional current) in the +x direction in
the presence of  a magnetic  field which  is  in  the +y direction.  According  to  our
fundamental observation, the moving charges in the wire will experience a magnetic
force which is perpendicular to both the magnetic field and the velocity. Let’s look at
the mathematics of this problem:

We’ve previously written: I=Δ q
Δ t

.

Now, we’re going to put a vector onto the current and relate it to the velocity of a
charged particle.

Let’s assume that the particles are moving with a constant velocity: v⃗=v0 x̂ .

In a time t, the particles will move through a distance given by: (Δ x )x̂=v0 t x̂ .
We can then imagine a column of such particles which has a cross sectional area A. 

The volume of such particles moving past a given point in space during a time t is:
volume=v0A t .

If the charges in this volume have a volume charge density , then the total charge
moving is:

Q=v0A t .
The current associated with this motion of charge is then:

I=Δ Q
Δ t

=v0A .

Now, let’s concentrate on a line segment of length L.
(note: be careful, later on we’re going to also use L to represent inductance).

Then, we have:

IL=
Δ Q
Δ t

L=v0AL=qv0 .

What I  have shown you now is that we can either deal  with charges moving or
lengths of current.

We’re going to want to put a vector sign on this. We’re going to call the conventional
current the direction that positive particles are moving. However, here, we’ll let the
vector be carried by the wire length. Thus, in this example:

IL⃗=IL x̂
The force that a current would experience then is given by:

F⃗=qv⃗ ⨯B⃗=IL⃗ ⨯B⃗ .
We define the  direction  of  L  to  be  that  direction  in  which  positive  charges  are
moving.
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Here is another example now:
Suppose a magnetic field of 1 T is directed along the +y direction and a wire 0.1 m
long carries a current of 1.0 A. What vector force will the wire experience?

The force on the wire is given by:
F⃗=I L⃗⨯B⃗ .

In this case, we then have:
F⃗=ILB (x̂⨯ŷ ) .

We thus find:
F⃗=ILB ẑ= (1.0A ) (0.1m ) (1.0T ) ẑ=0.1 N ẑ .

Now, you’ve probably wondered about those magnetic units of field called Tesla.
Let’s step back and explore this.

Suppose you have a wire with a length of 1.0 m and the wire carries a current of
1.0A. We’ll run the wire through a magnetic field (at right angles) and measure the
force on the wire. The result is this:
I: Define the magnetic field direction
(a) let the conventional current be directed in the +x direction
(b) position the magnet so that the force on the wire is observed to be in the +z
direction
(c) the direction of the magnetic field is in the +y direction.
II: Define the strength of the magnetic field
(a) Increase the magnetic field strength until 1 N of force is measured.
(later, you’ll see how one increases magnetic field strength)
If the conventional current is in the +x direction and is equal to 1A, and if the force
is  in  the +z direction  and is  equal  to  1N,  then the  magnetic  field  is  in  the +y
direction and is equal to 1 T.
In more familiar terms, the Tesla can be seen to have units of:

[B]=
N

A m
Now, it’s going to turn out that the definition for the Tesla which I have just given
you is, in fact, not how a Tesla is defined. Later, we’ll be able to calculate magnetic
field  strengths  directly  from currents.  The force  on  a  wire  will  then be used  to
provide a definition for current instead of magnetic field strength.

Do be aware, however, that at this point, I am not telling you the whole story about
magnetic fields!

In the lab, you will  be measuring directly the force on a current carrying wire in
order to determine the magnetic field strength of a permanent magnet.
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Now, what happens if  the wire carrying the current  is  not  at  right  angles to an
external magnetic field?

The force on a current-carrying conductor is given by:
F⃗=I L⃗⨯B⃗ .

The force will always be perpendicular to both L and B. However, what if L and B are
not at right angles?

We have a way to write the magnitude of the force in terms of the cross product of
two vectors. Recall, that for 2 vectors,

∣⃗CXD⃗∣=∣C⃗∣∣D⃗∣∣sin(θ)∣
where θ is the angle between C and D. You might as well refer this to the smallest
angle between these two vectors.

If the wire is not at right angles to the magnetic field, you will observe the following:
∣⃗F∣=ILBsin (θ ) .

In the lab, you will also be able to verify this angular dependence for the force on a
current-carrying conductor.
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(1) A proton mp=1.67x10-27kg is moving with a velocity v=0.01c (c is the speed of
light, c=3x108 m/s) at right angles to a magnetic field which is 10 T in strength.
What is the radius of the orbit of the proton. (ignore radiation effects here). The
charge on the proton is q=+1.602x10-19C.

Solution:
F⃗=qv⃗ ⨯B⃗⇒∣⃗F∣=qvB

This force is always at right angles to the velocity and is thus a central force. So:

F=m v2

R
.

We can find the radius by equating the two forces:

m v2

R
=qvB⇒R=

mv
qB

=

(1.67x10−27Kg)(0.01x3x108 m
s

)

(1.602x10−19C)(10 T)
=3.13x10−3m

If  you want a tighter  orbit,  you can increase the magnetic  field or  increase the
particle velocity.  However,  do be aware that as the orbit  increases, so does the
acceleration of the particle which will result in increased radiation from the particle
and hence, energy loss.

(2) A wire has a length of 0.78 m and carries a current of 0.35 A in the +y direction.
The wire experiences an upward force  of  0.10 N. What is  the direction  and the
strength of the magnetic field which is at right angles to this wire?

Solution:
It is easy to find the magnetic field strength from F=ILB. The field strength is then
given by:

B=
F
IL

=
0.1N

(0.35A)(0.78m)
=0.366T .

The direction needs to be looked at carefully: for the cross product, we have:
x̂⨯ŷ=x̂ ŷ⨯ẑ=x̂ ẑ ⨯x̂=ŷ
ŷ ⨯x̂=−ẑ ẑ⨯ŷ=−x̂ x̂⨯ẑ=−ŷ

(it’s easy to remember (x,y,z) (y,z,x),(z,x,y) give positive cross products)
Now, we defined the +y direction to be that direction in which the current is flowing.
Let’s pick the +z direction to be upward. Then, the direction of B that would produce
a force in the +z direction is, in fact, going to have to be in the –x direction.
Thus: B⃗=−0.366 T x̂
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(3)  Show  that  a  closed  loop  carrying  a  current  I  in  a  uniform  magnetic  field
experiences no net external force.

This problem is one subtle puppy that is often not even mentioned in text books. In
fact, you really need to search the text books to find this. I used to be a bit uneasy
talking about this until I did finally find it in a text book.
first:
What if you have several segments of wire, each of which carry a current I  in a
uniform magnetic field. What is the total force on the segments?
the force on any one segment is given by:

F⃗=I L⃗⨯B⃗
We need, however, to superimpose the forces of several segments. Thus:

F⃗= ∑
i segments

I L⃗i ⨯B⃗

Ok, I’m going to rewrite this slightly …
F⃗=− ∑

i segments

B⃗⨯IL⃗ i=−I B⃗⨯ ∑
i segments

L⃗ i

I  don’t  think you’ll  have any mathematical  problem with this  … as an example,
consider two segments, L1 and L2. Then,

F⃗=− ∑
i segments

B⃗⨯IL⃗ i=−I B⃗⨯ ( L⃗1+ L⃗2)=−IB⃗⨯ ∑
i segments

L⃗ i

at least, that’s how I convinced myself that it was ok to do what I’ve just done. Now
remember, this only works if B is uniform at each segment. Otherwise, all bets are
off.
Now, you need to ask yourself this: what is that sum of segments? Remember about
the 2nd week of 1st semester physics when I introduced you to vectors? We there
defined the displacement vector  as the vector  sum of  all  individual  vectors  that
made up a trip. I probably even told you to remember that for later use.

D⃗≡displacement= ∑
i segments

L⃗ i

And, D⃗=0⃗  for a closed loop.

In particular, we want to take a round trip. 
If we do, then the displacement vector is zero.

Thus, for a closed loop:

∑
i segments

L⃗ i=0⃗⇒ F⃗ magnetic
closed loop

=0⃗

Now you might ask yourself … what good is this? Let me show you.
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The circular loop shown carries a current I. A uniform magnetic field is directed into
the screen. Find the net magnetic force on this portion of the wire.

It’s not too easy to add up all those little segments of the wire. In fact, really only
the calculus students can do it directly

On the other  hand,  you know my little  theorem above which  says that  the net
magnetic force on a closed loop is exactly zero if the loop is in a uniform magnetic
field.

Consider the purple line carrying the current in the direction shown. When it joins
up, we have a closed loop and the net magnetic force is equal to zero. You can
easily calculate the magnetic force on this wire since it is equal to:

F⃗=2IRB (x̂⨯ŷ )=2IRBẑ
where I’ve let the right hand direction be +x and into the screen be +y. +z is the
upward direction.
Since the total force on the closed loop must be zero, we then have:

F⃗=−2IRBẑ
on the circular loop.

In fact, the red loop could look like this and the same result
will  hold. I think, however, for application of this result, you
need  to  be  careful  about  letting  part  of  the  circuit  go  to
infinity and then come back. You might have problems then.
I’m also a bit uneasy about a “fractal path” here but it ought
to be ok, I believe.


