
r21 Physics 220: Worksheet 04 Name _______________

Concepts:  Electrostatic  Work,  Electrostatic  Potential,  superposition,  Conservative

Fields, Electrostatic Potential difference, capacitance, E⃗=−ΔV
Δ x

x̂ .

(1) Find the work required to bring a charge qp from infinity to a location r⃗p  in the
presence  of  an  arbitrary  charge  distribution  which  produces  an  electrostatic
potential V. Thus, use this to introduce the electrostatic potential.

(2) Find the electrostatic potential due to a conducting sphere of radius a (located at
the origin) at a point  r⃗p  from the center of the sphere if the sphere has a total
charge Q.

(3) Determine the work required to assemble 3 charges given by: 
(#:q,x,y,z)=(1:3C,1,1,1),(2:6C,2,2,2),(3:-9C,3,3,3).

(4)  The potential  difference is defined as the difference in electrostatic  potential
between two points in space. It can also be defined as the negative work per unit
charge to move a charge between two points in space. 
Determine  the  potential  difference  between  two  plates  of  a  ideal  parallel  plate
capacitor with plates of area A and separation d which has a charge Q on one plate
and –Q on the other plate.

(5)  A  parallel  plate  capacitor  of  capacitance  C=6f  is  charged  to  a  potential
difference of 200 Volts. How much energy is stored in the capacitor? If the plate
separation is 0.0001m, what is the energy density of the capacitor? Then, what is
the magnitude of the electric field inside the capacitor?
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Electrostatic Potential due to a Point Charge

Consider a charge located at the origin. The field from this charge is given by:

E⃗p=k
q1

∣⃗rp− r⃗1∣
2
r̂1p=k

q1

∣⃗rp∣
2
r̂p

Now, let’s bring in a second charge (qp) from infinity and ask how much work is
required to do this.  The force which must be overcome is the electrostatic force and
thus,

F⃗p1=k
q1qp

∣⃗rp− r⃗ i∣
2
r̂1p

From our definition of work, we can determine this result:
W1p=∑

δ r⃗p

F⃗p1⋅⃗rp

The problem here is that the force is varying as you get charge p closer and closer
to charge 1 (that is why I needed to include the sum sign). To answer the ultimate
question  of  how much work  is  required  to  bring  charge  p  to  within  a  distance
∣⃗rp− r⃗ i∣ , you need to add up small changes in the positions.  

Non-calculus:
For non-calculus people, the result is:

W1p=
k q1q2

∣⃗rp∣

Calculus:

W1p= ∫
∞

∣⃗rp−r⃗ i∣

k
q1qp

∣⃗rp− r⃗ i∣
2
r̂1p⋅d r⃗1p

where
r⃗ ip=r⃗ p− r⃗ i

The easiest thing to do now is to set charge 1 at the origin. Thus,

The result which requires calculus is given by

W1p=
k q1qp

|⃗rp|
We like to side-step this whole work thing though since the work really depends
upon the size of the charge that you are bringing up from infinity. Instead, we define
the electrostatic potential as

V≡W
qp

For the case of a single point charge qi located at r⃗ i , the electrostatic potential at
a point in space designated by r⃗p  is given by
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V=k
qi

∣⃗rp− r⃗ i∣
For n charges, the potential at a point in space is given by:

V ( r⃗p)=∑
i=1

i=n

k
qi

|⃗rp− r⃗ i|
.

These expressions are very important
Furthermore,  since in reality  all  charges are discrete,  it  can be argued that one
obtains all other potentials by a direct superposition of individual potentials due to
point charges. Often, since this is not a vector quantity, you might find it easier to
calculate the potential and from there calculate the electric field. However, unless
you’re a calculus student or you have a very simple situation (such as a parallel
plate capacitor), you may find this task to be difficult.
Here is a nice example … calculate the potential along the symmetry axis of the ring
of charge which we had in an earlier problem on worksheet 2.

Solution:
In this case, each of  the charges is the same distance from the point  along the
symmetry axis. Thus, if the ring is in the x-y plane and the symmetry axis is along
the z-direction, we have:

V (zp)=
kQ

√zp
2
+ a2

where the radius of the ring is a and the ring has a total charge Q. Now, you might
ask, what good is this potential? Here is the answer (in the form of a question): How
much work is required to bring a positive test charge qp from infinity to a distance zp

from a positively charged ring of radius a with a total charge Q?

The answer is pretty straight forward now:

W=qp V=
k Qqp

√zp
2
+ a2

The  nice  thing  about  electrostatic  potentials  is  this:  they  are  conservative.  This
means that no matter what path you take from infinity to the desired location, if you
can calculate the potential at two reference points, the work in going from the initial
position to the final position is always the same (independent of path).

For non-calculus students, the result for the electric field along the symmetry axis of
the ring is

E⃗=
k Qzp

(zp
2
+ a2

)
3 /2

ẑ .

If E is uniform in the x-direction, this connection is particularly easy to work with:

E⃗=−Δ V
Δ x

x̂ . 
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Otherwise you need calculus.  This is the most complicated version of this that the
non-calculus students can work with. 

We now show an important connection between the electric field and the electric
potential at a point in space. Since the electrostatic force is conservative, we have
that the electrostatic field is related to a conservative potential by:

non-calculus: E⃗=−Δ V
Δ x

x̂:E⃗  is unifom in the x direction .

Note  however  that  later  we  will  run  into  a  type  of  electric  field  that  is  not
conservative since it is generated by a changing magnetic field; this will not apply to
that field.

Now let me show you one way to use the electrostatic potential of a point charge.

Let’s determine how much work is required to assemble a charge
distribution  of  equal  charges  in  the  form  of  a  square  with  the
following descriptions:

(1,q,0,0,0)
(2,q,1,0,0)
(3,q,0,1,0)

(4,q,1,1,0)
The  total  work  required  is  the  work  to  bring  in  each  additional  charge  in  the
presence of charges already there:

W=W12+ W13+ W14+W23+W24+W34

This work required to assemble the charge distribution can be written as:

W=
1
2∑i=1

N

∑
j=1
j≠i

N k qiqj

∣⃗r j− r⃗ i∣

Now there is a relatively easy way to express this work: write it out as a square and
then add up all the terms. Here is an example:

W=
1
2 [

[+] j→
i↓

1 2 3 4 ... N

1 0 W12 W13 W14 ... W1N

2 W21 0 W23 W24 ... W2N

3 W31 W32 0 W34 ... W3N

4 W41 W42 W43 0 ... W4N

... ... ... ... ... ... ...
N WN1 WN2 WN3 WN4 ... 0

]
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where my unusual sign [+] means that you are to add up everything inside the [].
I’ve written it here just to be clear about what you are going to be doing with the [].
Now an important property here is that if we use the entire thing in brackets, then
we are counting the charges exactly twice too many times. We then can reduce the
amount of our work required by recognizing that Wij=W ji  , eliminating everything
below the diagonal of zeros and multiplying by 2. The next step makes this look like
the following:

W=[
[+] j→

i↓
1 2 3 4 ... N

1 0 W12 W13 W14 ... W1N

2 0 0 W23 W24 ... W2N

3 0 0 0 W34 ... W3N

4 0 0 0 0 ... W4N

... ... ... ... ... ... ...
N 0 0 0 0 ... 0

]
Now let’s apply this to the specifics of the problem at hand. Each charge is the same
and  so  the  works  involved  for  each  charge  ultimately  require  calculation  of
distances. The intermediate steps showing this looks like

: W=[
[+] j→

i↓
1 2 3 4

1 0 W12 W13 W14

2 0 0 W23 W24

3 0 0 0 W34

4 0 0 0 0
]

W=k [
[+]

j→
i↓

1 2 3 4

1 0
q1q2

∣r12∣

q1q3

∣r13∣

q1q4

∣r14∣

2 0 0
q2q3

∣r23∣

q2q4

∣r24∣

3 0 0 0
q3q4

∣r34∣
4 0 0 0 0

]
We thus need to calculate the various distances involved. These are given by:

∣⃗r1− r⃗2∣=∣⃗r1− r⃗3∣=∣⃗r2− r⃗4∣=∣⃗r3−r⃗4∣=1 and ∣⃗r1− r⃗4∣=∣⃗r2− r⃗3∣=√2

Also, in the particular problem at hand, each q is the same. Putting these inside the
[] and factoring out the charge above then gives:
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W=kq2 [
[+] j→

i↓
1 2 3 4

1 0
1
1

1
1

1

√2

2 0 0 1
√2

1
1

3 0 0 0
1
1

4 0 0 0 0

]
You’ll  note  I’ve  eliminated  everything  but  what  is  specifically  involved  in  this
example now. One small simplifying step gives:

W=kq2 [
[+] j→

i↓
1 2 3 4

1 0 1 1
1

√2

2 0 0 1
√2

1

3 0 0 0 1
4 0 0 0 0

]
Now the next step is to add up everything inside the []. This gives:

W=kq2[1+ 1+ 1

√2
+

1

√2
+ 1+ 1 ]=k q2[4+ 2

√2 ]=kq2 [4+ √2 ]=5.66k q2

If  you’re  just  dealing  with  a  few charges,  it  is  probably  easier  to  write  out  the
individual work terms and adding them rather than using the double sum notation.
I’ve written the double sum notation here to give you a method of attack that will
always work when dealing with discrete point charges. I’ve also provided you with a
framework  for  evaluating  this  general  result  in  a  nice  ordered  step-by-step
procedure. The only variations might be that you will need to include charge values
inside the [] if the charges are different (which was not the case in this example).

Once you have this potential energy, you can answer the questions of motion for
any of the charges if you know the masses to which the charges are attached. 

As you can see, electric potential is a very important quantity, physically. It is good,
therefore, that you understand how to calculate it, especially in simple situations.

The electrostatic potential superimposes. Thus, the potential at a point in space is
given by

V ( r⃗p)=∑
i=1

N

V i ( r⃗p− r⃗ i)

Note that although the electrostatic potential superimposes, electrostatic energies
do not always superimpose.
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Let’s  look  at  one  other  way  to  write  the  work  required  to  assemble  a  charge
distribution.

W=[
1
2
∑
i=1

N

∑
j=1
j≠i

N

k
qi qj

∣⃗r j− r⃗ i∣]=
1
2 [∑i=1

N

q i∑
j=1
j≠i

k
qj

∣⃗r j−r⃗ i∣]=
1
w
∑
i=1

N

qi V ( r⃗ i )

Here is a quick example: suppose the potential at a point in space is 5V. What is the
work required to bring a 0.5C charge to this point? The answer is 

W=1
2
(0.5x10−6 )x5=1.25x10−6 J

As you can see, knowing the potential at a particular point in space is useful.  Of
course, this is assuming that the action of bring the charge to that location does not,
in  fact,  change  the  potential  that  you  are  working  against.  Later,  we’ll  need  a
modification for the case where separating charge changes the potential (as in a
capacitor). 

What this says is that the work required to bring a charge to a point is the product of
that charge and the electrostatic potential at the point in space where that charge is
located.

Seeing as the electric potential is so important, we ought to see how to calculate it.

What is E for the long wire? This is easily calculated by Gauss’s Law:
ΦE=∑

Δ Ai

E⃗i⋅Δ A⃗ i=∑
Δ A i

E⃗i⋅n̂Δ Ai=∑
Δ A i

Ei⋅Δ Ai=E∑
Δ Ai

A i=E(2πsh)

And
Qenc
ϵ0
=
λh
ϵ0

Thus, the electric field from the long wire is:
E⃗= λ

2πϵ0s
ŝ

The electric potential at sp is then:

V=∑
r=a

r=sp

λ

2 πϵ0s
Δs= λ

2πϵ0
∑
r=a

r=sp

Δs
s
= λ

2πϵ0
ln(

sp

a )

The problem here, of course, is that we can’t reference the potential to infinity or
zero so I chose to reference it to a point a. That ought to be ok … the potential is not
completely determined except to within a constant. I suppose you could say that the
potential  is  not  directly  measurable;  it  is  the  potential  difference  that  is  the
measurable quantity.

What about the potential at points along the symmetry axis of the electric dipole?
We had, for the dipole,
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E⃗p=2kq(
q

(a2
+ y2)

3 /2 ) (−x̂) .

Since along the symmetry axis the displacement is perpendicular to the electric
field, the potential along the symmetry axis of the dipole is zero.

(it’s zero because the electric field points along the x-direction but the path taken is
along the y-axis). The dot product is therefore zero. We ought to be able to get this
from a direct superposition of the potentials due to two point charges also. Let’s see
if we can. For a point charge,

V=k
qi

∣⃗rp− r⃗ i∣
Along the y-axis, we then have:

r⃗p=0x̂+ yp ŷ ; r⃗ 1=−ax̂+ 0ŷ ; r⃗2=+ ax̂+ 0ŷ

So thus, the potential along the symmetry axis is given by:

V=kq(
−1

√a2
+ yp

2
+

1

√a2
+ yp

2 )=0

Hmmm .. of course we knew this …. If you’re coming in along this axis, you are not
doing  work  at  all  since  the  electric  field  points  in  the  x  direction  but  the
displacement is in the y direction.
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(1) Find the work required to bring a charge qp from infinity to a location r⃗p  in the
presence of an arbitrary charge distribution which produces at r⃗p  an electrostatic
potential V. Thus, use this to introduce the electrostatic potential.

Solution: From the definition of electrostatic potential we have:

V≡W
qp

Provided  you  know  what  the  electrostatic  potential  for  the  arbitrary  charge
distribution is, you are then able to find the work required to move a charge close to
this distribution. The result is:

W=V ( r⃗ p)qp .
Notice  that  this  work  can  be  either  positive  or  negative,  depending  upon  the
potential and the charge.

(2) Find the electrostatic potential due to a conducting sphere of radius a (located at
the origin) at a point  r⃗p  from the center of the sphere if the sphere has a total
charge Q.

Solution:  The sphere acts like a point charge for regions external  to the sphere.
From class notes, we know that the electrostatic potential of a point charge is given
by:

V ( r⃗p)=k
qi

∣⃗rp− r⃗ i∣
The sphere has a total charge Q and it is located at the origin. Thus, we have:

V ( r⃗p)=k Q
∣⃗rp∣

At the surface of the sphere, the potential reaches its maximum value which is

V (a )=k Q
a

Since the sphere is conducting, all the charge will reside on its surface. The potential
inside the sphere will be constant (Not necessarily zero) and equal to the value at

the surface.

Calculus: Determine the electric field from the potential of the sphere.

What do you imagine we’d do if the sphere were not located at the origin?
The potential for a sphere not at the origin is given by:

V ( r⃗p)=k Q
∣⃗r ip∣

But getting the electric field here is harder for non-calculus students.
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It though can be shown to be the same as the result for a point charge:

E⃗p=
kQ

|⃗r ip|
2
r̂ip

It takes a bit of thought to realize that [ (xp−xi ) x̂+ (yp−yi ) ŷ+ (zp−zi )ẑ ]=r⃗ ip but the key

to understanding this is to understand that the Cartesian unit vectors are the same
for the “i” coordinates as for the “p” coordinates.

(3) Determine the work required to assemble 3 charges given by: 
(#:q,x,y,z)=(1:3C,1,1,1),(2:6C,2,2,2),(3:-9C,3,3,3).

Solution: from class notes, we have:

W=[
1
2
∑
i=1

N

∑
j=1
j≠i

N

k
qiq j

∣⃗r j− r⃗ i∣]=k [
[+] j→

i↓
1 2 3

1 0
q1q2

∣r12∣

q1q3

∣r13∣

2 0 0
q2q3

∣r23∣
]=kμμ [

18
√3

−27
√12

0 −54

√3
]

=kμμ (
18

√3
−

27

√12
−

54

√3 )=8.99x10−3
(10.392−7.794−31.717 )=−0.262 J

Notice that the last row can actually be omitted because it is filled with zero’s. You
will also note another difference: we need to leave the charges inside the [] this time
since they are not all  of  the same magnitude.  Notice,  however,  that since each
charge is micro, I am able to factor out that exponent.
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(4) The potential  difference is defined as the difference in electrostatic  potential
between two points in space. It can also be defined as the negative work per unit
charge to move a charge between two points in space. 
Determine  the  potential  difference  between  two  plates  of  a  ideal  parallel  plate
capacitor with plates of area A and separation d which has a charge separation Q on
one plate and –Q on the other plate.  Note: this is a very important problem.
Make sure you understand it.
Solution:
From Gauss’s law, we have

E⃗= σϵ0
x̂

between the plates of the capacitor if the positive plate is located at the origin.
Since the electric field is uniform, we can easily determine the potential difference
(which is often written V):

Δ V=−E⃗⋅Δ x⃗=−σd
ϵ0

Since the plates have an area A, and a total charge separation Q , we thus have

Δ V=− Qd
A ϵ0

The capacitance of the capacitor is defined as the (magnitude) of the ratio of the
charge separation to the potential. Thus: 

C≡∣ Q
Δ V∣=

Q

(
Qd
A ϵ0 )

=ϵ0
A
d

for  the parallel  plate capacitor.  In  passing,  I’d  like  to  mention  that  although we
speak of “charging up a capacitor”, in fact what is happening is that an electrically
neutral capacitor has the charge separated from one plate to another. The capacitor
is  overall  electrically  neutral  before  charging and also after  charging.  You have,
however, moved a total charge Q from one plate and placed it on the other plate.
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(5)  A  parallel  plate  capacitor  of  capacitance  C=6f  is  charged  to  a  potential
difference of 200 Volts. How much energy is stored in the capacitor? If the plate
separation is 0.0001m, what is the energy density of the capacitor? Then, what is
the  magnitude  of  the  electric  field  inside  the  capacitor?  Note:  this  is  a  very
important problem. Make sure you understand it. The concept of energy
density is also extremely important to understand.
Solution: 
The potential that a given charge moves against is given by:

Δ V=Q
C

where Q represents the charge that has already been moved from one plate to the
other. The amount of work that is required to move a single charge q across this
potential difference is given by:

W=qΔ V=q Q
C

But now you notice that the potential difference across the capacitor has increased.
In fact, the potential difference is now:

Δ V=Q+ q
C

The work required to move the next q across the capacitor is then given by:

W=q Q+ q
C

As  you  can  see,  the  work  for  each  successive  charge  increases.  Let  me try  to
formulate a sequence for this (Each q is the charge on the electron or proton here ...
it is really small). I am starting with a completely uncharged capacitor and moving
equal sized elementary charges across one at a time, and adding up the work done
for each.

W=0+ q
q
C
+ q

2q
C
+ q

3q
C
+ q

4q
C
+ ...+ q

Nq
C
=

q2

C
[0+ 1+ 2+ 3+ ...+ N ]=

q2

C∑i=1

i=N

i

This is an arithmetic series. You can look up arithmetic series at Mathworld and you
will find:

∑
i=1

i=N

i=
1
2

n (n+ 1 )

Now if n is large (it is, typically) then the sequence can be approximated as:

∑
i=1

i=N

i≈
1
2

n2

Here are some quick examples to show the validity of this approximation:

1+ 2+ 3+ 4+ 5=5+ 5+ 5=15=1
2
(5)(6)=30

2
=15: 1

2
(52)=12.5⇒16.7 %error

∑
i=1

100

i=
1
2
(100)(101)=5050:

1
2
(1002 )=5000⇒1 %error

http://mathworld.wolfram.com/ArithmeticSeries.html
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Normally n might be on the order of  1010 (or  more).  You can see then that the
approximation  is  pretty much valid  as n gets larger (it  is  already good at 100).
However, with the new nanotechnology advancements, you may need to get away
from the approximation and add up discrete charges like this. Of course, there are
still approximations involved for the potential between the plates of the capacitor. A
more detailed analysis would show that the charges on the plates also spread out as
much as they can so that the potential for the first few charges in fact is different
than what I have represented. I’ll not worry about that here. So we have the work
required to be given by:

W=q2

C [
1
2

n2]=1
2

(nq )
2

C
=

Q2

2C

Now let me show you a second approach that will give the same important result:

Δ V=Q
C

The real  difficulty here lies with the fact that the charges are moving against a
changing potential … every charge moved across the plates makes it harder for the
next charge to be moved across the plates.

Non-calculus: We can (in a non-calculus way) answer this question then by saying 
that Q is moved against the average V (since the potential is linear in q). Thus,

W=Q (Δ V )average=
Q2

2C

Thus,  the  total  energy  stored  in  the  capacitor  will  be  given  by:  (Hint:  Very
important!)

U=Q2

2C
=

1
2

C(Δ V )
2

Now, how much energy is stored in our capacitor?

U=1
2

6x10−6
(200 )

2
=0.12J

Now for the rest of the formulation … Since for a parallel plate capacitor, we have 

C=ϵ0
A
d

we can write the stored energy as:

U=1
2
ϵ0

A
d

(Ed )
2
=

1
2
ϵ0 (Ad )E2

The term Ad is the internal volume of the capacitor. Thus, the energy density of
the capacitor is given by

u≡ U
volume

=
1
2
ϵ0E2

For our present capacitor, we can find the plate area from:

A=Cd
ϵ0
=

6x10−6x0.0001
8.854x10−12

=67.8m2
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The energy density is u= 0.12 J
67.8x0.0001m3

=17.7 J
m3

The electric field inside is

E= V
d
=

200V
0.0001m

=2x106 V
m

Clearly, there has got to be more to the story than I have told you. The rest involves
inserting materials into the capacitor with a high dielectric constant.


