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Concepts: Electric Field, lines of force, charge density, dipole moment, electric dipole
(1)  An  equilateral  triangle  with  each  side  of  length  0.10  m  has  identical  charges  of
+q=1.0C. What is the net electrostatic vector force on charge 1?

(2) A point charge q1=-3.00C is located at x=0.  A second charge q2=+6.00C is located at
x=1.00 m.  Find a point other than infinity where the electric field is zero.

(3) The electric dipole consists of a positive and a negative charge separated by a distance
of 2a.  Suppose in this case, your dipole had +q at x=a and -q at x=-a. Find an expression
for the electric field along the y-axis.  You should then be able to show that the electric field
behaves as Ex≈−

2kqa
y3  at distant points along the y-axis.

(4) Suppose in this case, your dipole had +q at x=a and -q at x=-a. Find an expression for
the electric field along the x-axis at x>a.  You should then be able to show that the electric
field behaves as Ex≈

4kqa
x3  at distant points along the  x -axis.  Then write the result in

terms of the dipole moment.

(5) Suppose that you have a ring of radius r=a and total charge Q located in the x-y plane.
What is the electric field for points along the symmetry axis of this ring? How does this field
behave along the axis at distant points along the symmetry axis?
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We have previously defined the electric force between two charges and we have talked
about the law of charges. It turns out that it is less important to talk about the electric force
than another quantity called the electric field. The electric field is a real physical entity
and carries away energy from an accelerating electric charge.

The electric field is defined by:
E⃗≡ F⃗electric

q
Here, by definition, q is a positive test charge.

E points in the direction that a positive test charge would accelerate under the influence
of an electric force.  These “lines of force” can be sketched with a few rules:
(1) They point away from positive charges.
(2) They point towards negative charges.
(3) They don’t intersect.
(4) They point normal to the surface of a conductor.
(5) The density of these lines is an indicator of the electric field strength
(6) A positive charge placed on one of the field lines accelerates in the line’s direction.

I’ll later show you how to draw these lines of force.
In more elegant terms, then, using the definition of force that we had in the last lecture, we
can write the electric field as:

E⃗p=∑
i=1

i=n
k qi

∣⃗rp− r⃗ i∣
2 r̂ ip=∑

i=1

i=n
k qi

∣⃗r ip∣
2 r̂ip

Let’s look at each of the symbols:
“n”=# of discrete charges in the system

qi is the ith charge in the system.
“k” is coulomb’s constant

r⃗p is the vector from the origin pointed towards the point p in space. This would also be
the location of the positive test charge so the notation that we have developed is really the
same here:  the test charge is now charge p.  r⃗ i  is the vector from the origin pointed
towards the charge qi in space. r̂ip  is the unit vector directed from the charge qi towards
the point p in space. Don’t get hungup on the fact that a particular charge might not be
located at the origin: apply the rules I’ve shown you in worksheet 1 and you will correctly
calculate the electric field.
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One thing  that  you want  to  know is  just  how do you calculate  r̂ip .  Here  is  the way
although you have already seen this in worksheet 1. Firstly, r⃗ ip≡r⃗ p− r⃗ i . We can now, from
this  find the unit  vector  pretty easily.  Again,  in words: r⃗ ip  is  the vector pointing from
charge i toward point p in space. The unit vector pointing in this direction is given by:

r̂ip=
r⃗ ip

∣⃗rp− r⃗ i∣
As a side note: what are the dimensions (units) associated with a unit vector?

So, let me show you an example calculation.
 Suppose r⃗p=xp x̂+ yp ŷ+ zp ẑ  and r⃗ i=xix̂+ yiŷ+ zi ẑ .

Then,

r̂ip=
(xp−xi) x̂+ (yi−yp) ŷ+ (zp−zi) ẑ

√(xp−xi )
2+ (yp−yi)

2+ (zp−zi )
2

Here are some numerical examples:

Suppose r⃗1=1x̂+ 2ŷ+ 3ẑ  and r⃗p=3x̂+ 2ŷ+ 1ẑ . 
Then: r⃗ ip=r⃗ p− r⃗ i=(3−1 ) x̂+ (2−2 ) ŷ+ (1−3) ẑ=2x̂+ 0ŷ−2ẑ
The unit vector is then: r̂ip=

2x̂−2ẑ
√22+ 22=

2
√8

(x̂− ẑ)= 1
√2

( x̂−ẑ)

Another really easy example: Suppose r⃗ i=1x̂+ 0ŷ+ 0ẑ and r⃗p=0x̂+ 0ŷ+ 0ẑ .
r⃗ ip=(0−1 ) x̂=−x̂  and r̂ip=

−x̂
1 =−x̂

Note that ∣⃗rp− r⃗ i∣ is simply the distance between the charge and the point p. It is not hard
from this to see that for special cases where the point of interest (p) is located at the origin.
we have: r⃗ ip=0⃗− r⃗ i=− r⃗ i . One detail about notation: I’ll write: r⃗ ip≡r⃗ p− r⃗ i  occasionally and
you’ll probably do the same. While this is more technical, in principle you might just find it
an easier approach than having to resolve electric field components each time. This applies
to charges that are discrete. 
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One final important point. I’ll introduce in problems 3 and 4 the electric dipole moment. For
a collection of j charges, we define the dipole moment as:

p⃗=∑
j=1

n
q j r⃗ j

It’s  important not to confuse this  p⃗  with the “p” which I’m using to designate the
point in space. There is also one additional term which is going to be introduced later,
namely the polarization of  a material  which is  designated by  P⃗ and is  defined as the
electric dipole moment per unit volume.

There are some details to the dipole moment which are worth noting. So long as the overall
charge distribution is neutral, the dipole moment is coordinate independent.  The dipole
moment is related to the second term of a multipole expansion of the electric field. As it is
normally used, the dipole moment refers to the approximate behavior of an ideal dipole at
large distances from the dipole. By ideal, I mean that the distance between the positive and
negative charge is insignificant compared to the distance to the point of interest in space.
This,  in  turn,  means  the  multipole  expansion  is  valid.  People  use  the  dipole  moment
because it is often the largest contribution to the electric field. However, there are other
terms in the multipole expansion that may be significant.
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 (1)  An  equilateral  triangle  with  each  side  of  length  0.10  m  has  identical  charges  of
+q=1.0C. What is the net electrostatic vector force on charge 1?

Solution: I want to show you 2 ways to do this problem. The first uses symmetry and is
quicker. The second is the brute force method. You will find this problem on a spreadsheet.
The force on any single charge is shown in red below:

The  little  purple  dots  indicate  the  same  angle  which  is
180/3=60 degrees. This  is  the angle   that I’m using below.
This only works because each of the charges is the same and
each distance is the same.
I am indicating forces with the red arrows.
Thus, the “off-axis” force is going to be given by:

F⃗=Fx x̂+ Fy ŷ=F (cos(θ) x̂−sin(θ) ŷ)
The total force on the single charge is then given by:

F⃗net=Fx̂+ Fx x̂+ Fy ŷ=F [(1+ cos(θ)) x̂−sin(θ) ŷ ]
We find the magnitude of this force from Coulomb’s law:

∣⃗F∣=∣k q1q2

r2 ∣=8.99x109(1x10−12

0.01 )=0.899N

We can now find the force on this charge: F⃗=1.349 x̂−0.779 ŷN .
 

The magnitude of this force is ∣⃗F∣=√1.3492+ 0.7992=1.558N .

The angle which this force makes with respect to the x-axis is given by:
tan(ϕ)=Fy

Fx
=−0.779

1.349 ⇒ϕ=−30o . 
The correct result here is -30 degrees.
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Now let me show you the second (and, in my opinion the more powerful) way to do this.

I am putting labels on the charges as shown. I will let charge 1 be at
the origin, so it has coordinates (0,0).

Probably the hardest part  is  to find the coordinates of  charge #3.
However you want to add it  up, the x coordinate of  the charge is

x=−0.05m . The length of this vector pointing to charge 2 is 0.1m.
Thus, the y coordinate is:

|⃗r3|
2
=x3

2+y3
2⇒y3

2=|⃗r3|
2
−x3

2⇒y3=√|⃗r3
2|−x3

2

⇒y3=√ .12−(−0.05)2=√0.01−0.0025=0.0867
The various vectors are then:

r⃗1=0x̂+ 0ŷ ; r⃗3=−0.05x̂+ 0.08667ŷ; r⃗2=−0.1 x̂+ 0ŷ; r⃗p=0x̂+ 0ŷ
Now we’re going to need to calculate this:

F⃗p=∑
i=1
i≠p

n
k qiqp

∣⃗r ip∣
2 r̂ ip

That means if we’re calculating the force on charge 1, we need the following:
F⃗(p=1)= ∑

i=1
i≠(p=1)

n
k qiqp=1

∣⃗r ip∣
2 r̂ ip (p=1)=k q1q2

∣⃗r21∣
2 r̂21+ k q3q1

∣⃗r31∣
2 r̂31

We are going to need to calculate the various vectors involved here. I’m going to try to
show this in detail here.

r⃗21= r⃗1− r⃗2=[0x̂+ 0ŷ ]−[−0.1 x̂+ 0ŷ ]=0.1x̂+ 0ŷ : r̂21=
r⃗21

∣⃗r21∣
= x̂
∣x̂∣=x̂

r⃗31= r⃗1− r⃗3=[0x̂+ 0ŷ ]−[−0.05 x̂+ 0.0866ŷ ]=0.05 x̂−0.0866ŷ

r̂31=
r⃗ 31

∣⃗r 31∣
=

0.05x̂−0.08667ŷ
√(−0.05)2+ (0.08667)2

=
0.05x̂−0.08667ŷ

.1 =0.5x̂−0.8667 ŷ=0.5x̂−√32 ŷ

The electric force at charge 1 (“p”) due to the other two charges is then:
F⃗1=k∑

i=2
i≠1

3 qiqp

∣⃗r i1∣
2 r̂ i1  

F⃗1=kq1 [ q2
.01 x̂+ q3

.01 (0.5x̂−√32 ŷ)]= kq2

0.01 [1.5x̂−0.866ŷ ]

⇒F⃗1=8.99x109x1x10−12 [150 x̂−86.6ŷ ]=1349x10−3 x̂−779x 10−3 ŷ=1.35 x̂−0.78ŷ N
∣⃗F1∣=√(1.35)2+ (−0.78)2=1.56N

This force makes the same angle with respect to the +x axis as before:
tan(ϕ)=Fy

Fx
=−0.78

1.35 ⇒ϕ=−30o

We could have found the same result by calculating the electric field at charge 1 due to
charges 2 and 3. The electric field at this point is given by:
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F⃗p=∑
i=1
i≠p

n
k qiqp

∣⃗r ip∣
2 r̂ ip

E⃗1=k [ q2
.01 x̂+ q3

.01 (0.5 x̂−√32 ŷ)]= kq
0.01 [1.5x̂−0.866 ŷ ]

⇒E⃗1=8.99x109x1x10−6 [150 x̂−86.6ŷ ]=8990
0.01 [1.5x̂−0.866 ŷ ]=[1.35x103 x̂−0.78x196 ŷ ]NC

or 
E⃗p=1.35x106 x̂−0.78x106 ŷ N

C
Then to get the force, multiply the electric field by the charge at point 1.

Notice that electric fields can get pretty large. But, a Newton of force from electrostatic
charges is also pretty large.



r22 Physics 220: Worksheet 02 Name _______________

(2) A point charge q1=-3.00C is located at x=0.  A second charge q2=+6.00C is located at
x=1.00 m.  Find a point other than infinity where the electric field is zero.

The electric field is defined by:

E⃗p=∑
i=1
i≠p

n
k qi

|⃗r ip|
2 r̂ ip

where p represents a point in space. 

We locate the initial charge at r⃗1=0x̂  and the second charge at r⃗2=1x̂ .
The vector pointing to p is given (in two dimensions) by:

r⃗p=xp x̂+ yp ŷ
The electric field at any point in 2-D space is then given by:

E⃗p=k q1

∣⃗r1p∣
2 r̂1p+ k q2

∣⃗r12∣
2 r̂2p

We can easily form each of these vectors now.
r⃗1p= r⃗p− r⃗1=xp x̂+ yp ŷ−0x̂−0 ŷ=xp x̂+ yp ŷ: r̂1p=

xp x̂+ yp ŷ
√xp

2+ yp
2

r⃗2p= r⃗p− r⃗2=xp x̂+ yp ŷ−1x̂−0 ŷ=(xp−1) x̂+ yp ŷ : r̂2p=
(xp−1) x̂+ ypŷ

√ (xp−1 )2+ yp
2

We now form the electric field:

E⃗p=k q1
1

(xp
2+ yp

2 )
xp x̂+ yp ŷ
√xp

2+ yp
2 + k q2

1
((xp−1)2+ yp

2)
(xp−1) x̂+ yp ŷ

√ (xp−1 )2+ yp
2

We need to solve this for E⃗p=0⃗
In this particular problem, we notice q2=-2q1. Thus:
0⃗=q1

1
(xp

2+ yp
2)

xp x̂+ yp ŷ
√xp

2+ yp
2 −2q1

1
((xp−1)2+ yp

2)
(xp−1) x̂+ yp ŷ

√ (xp−1)2+ yp
2

0⃗= 1
(xp

2+ yp
2)

xp x̂+ yp ŷ
√xp

2+ yp
2 −2 1

((xp−1)2+ yp
2)
(xp−1) x̂+ yp ŷ

√(xp−1)2+ yp
2

1
(xp

2+ yp
2)

xp x̂+ yp ŷ
√xp

2+ yp
2 =2 1

((xp−1)2+ yp
2)
(xp−1) x̂+ yp ŷ

√ (xp−1)2+ yp
2

x̂: xp

[xp
2+ yp

2]3 /2
=2 (xp−1)

[(xp−1)2+ yp
2 ]3 /2

ŷ : yp

[xp
2+ yp

2 ]3 /2
=2 yp

[(xp−1)2+ yp
2 ]3/2

It is easy to see that the y equation is satisfied with yp=0. This could have also come from
symmetry (in past versions of this problem I merely assumed this).

Use this in the x-equation:
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xp

xp
3=2 (xp−1)

[(xp−1)2 ]3 /2
=2 xp−1

[xp−1]3
⇒2xp

2=(xp−1)2⇒√2xp=±(xp−1 )

+ :√2xp=xp−1⇒xp(1−√2)−1=0⇒xp=
1

(1−√2 )
−:√2xp=−xp+ 1⇒xp (1+ √2)−1=0⇒xp=

1
(1+ √2)

The two solutions are thus obtained. Let me confirm that E is zero for each of these points.
If it’s not we’ll need to discard one solution.

On to the actual answer for the solutions: 
if (solution 1) xp=

1
1+√2

=0.4142 , the electric field is not zero.

if: (solution 2) xp=
1

1−√2
=−2.4142 ,  the electric field is zero.

 You can check these results using the spreadsheet on our website by choosing a test
charge of +1 located at each of the two solutions for x. I have provided the spreadsheet

showing the “zero” solution for you. 

What  this  sketch  above  shows  is  that  between  the  two
charges, it is impossible to have zero electric field (solution
1 is between the two charges). Solution 2 however is in a
region where it is possible to have zero electric field. The
only other region where you might consider is outside (at
positive x). However, you will never get zero there because
the +6 charge is not only larger than the -3 charge, but it is

also always closer to the point in that region.
Now, how else could this be solved? This is a quicker (and not nearly so mathematically
clean here): You could say this: the electric field at a point along the x-axis is:

E⃗p=k q1

x1p
2 r̂1p+ k q2

x2p
2 r̂2p

Now let’s lose the vector notation. This will increase the number of incorrect solutions but
that’s the price you’ll need to pay for this. Thus, we have:

q1

x1p
2 −

q2

x2p
2 =0  or  q1

x1p
2 +

q2

x2p
2 =0

here, q2=-2q1 so this gives:
1
x1p

2 +
2
x2p

2 =0  or  1
x1p

2 −
2

x2p
2 =0

We don't need to mess with the first result. It won't give real x values. Solving the second
equation then gives:

1
x1p

2 =
2
x2p

2 ⇒
1
x2=

2
(x−1 )2

⇒2 x2=(x−1 )2

The rest of the solution proceeds as before.
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2xp
2=(xp−1)2⇒√2xp=±(xp−1)

+ :√2xp=xp−1⇒xp(1−√2)−1=0⇒xp=
1

(1−√2)
−: √2xp=−xp+ 1⇒xp (1+ √2)−1=0⇒xp=

1
(1+ √2)

The following problem is quite important. Be sure you understand it.
(3) The electric dipole consists of a positive and a negative charge separated by a distance
of 2a.  Suppose in this case, your dipole had +q at x=a and -q at x=-a. Find an expression
for the electric field along the y-axis.  You should then be able to show that the electric field
behaves as Ex≈−

2kqa
y3  at distant points along the y-axis.

We begin with the definition of the electric field:

E⃗p=∑
i=1

i=n
k qi

∣⃗r i− r⃗p∣
2 r̂ ip

Now we need to obtain the various vectors involved.
r⃗1=ax̂ : r⃗2=−ax̂ : r⃗p=yp ŷ

r⃗1p= r⃗p− r⃗1=−a x̂+ yp ĥ : r⃗2p= r⃗p− r⃗2=a x̂+ yp ŷ

r̂1p=
r⃗1p

∣⃗r1p∣
=
−a x̂+ yp ŷ
√a2+ yp

2 : r̂2p=
r⃗ 2p

∣⃗r 2p∣
=

ax̂+ yp ŷ
√a2+ yp

2

Now we need to use these in the definition of the electric field.

E⃗p=k q1

∣⃗r1p∣
2 r̂1p+ k q2

∣⃗r2p∣
2 r̂2p  so here: E⃗p=k q1

a2+ yp
2
−ax̂+ yp ŷ
√a2+ yp

2 + k q2

a2+ yp
2

a x̂+ yp ŷ
√a2+ yp

2

We thus have: (letting q1 be the same magnitude as q2 but of opposite sign):

E⃗p=kq [ 1
a2+ yp

2
−a x̂+ yp ŷ
√a2+ yp

2 −
1

a2+ yp
2
a x̂+ yp ŷ
√a2+ yp

2 ]
E⃗p=kq [ 1

a2+ yp
2
−2ax̂
√a2+ yp

2 ]=− 2kqa
(a2+ yp

2)3 /2
x̂

This is the actual answer. Now let’s look at how this behaves for y>>a. The expansion is:
(1±x)n=1±nx+ n(n−1)

2! x2±
n(n−1)(n−2)

3! x2+ ... ;x2< 1

Also note: (1±x)−n=1∓nx+ n(n−1)
2! x2∓

n(n−1)(n−2)
3! x2+ ... ;x2< 1

What you want to do is to divide by what is big. Here, that would be yp.
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E⃗p=
−2kqa
∣yp∣

3 [1+ ( a
yp )

2]
−3/2

x̂ ≈−2kqa
∣yp∣

3 [1−3
2 ( a

yp )
2
+ ... ]x̂ ≈−2kqa

∣yp∣
3 x̂

The electric field at large distances along the perpendicular bisector of the dipole is:
E⃗p≈
−2kqa
∣yp∣

3 x̂

Both of these results are extremely important for systems involving electric dipoles! It is
also indeed very interesting to see that the dipole falls off as 1/y3 at large distances. The
term p=2qa is called the magnitude of the electric dipole moment. 

With  the  approximate  field  above,  we  can  define  the  dipole  moment  for  2  equal  and
opposite charges with charges and locations:

(+q;+ a,0,0)  and (−q;−a,0,0)
as:

p⃗=∑
j=1

2
q j r⃗ j=qax̂+ (−q)(−ax̂ )=q (2ax̂ )=qd⃗

where d⃗  is the vector pointing from the negative charge towards the
positive charge. 

With this, the electric field along the perpendicular bisector of the electric dipole becomes:
E⃗p≈−k p⃗

∣yp∣
3

This is extremely important because it defines the electric dipole. Students are
warned that many (about ½) of the undergraduate general chemistry text books
get this wrong.

Now, what if we have the same diople but wanted to find the field at an arbitrary location in
the x-y plane. 

r⃗1=a x̂: r⃗2=−a x̂: r⃗p=xp x̂+ yp ŷ

r⃗1p= r⃗p− r⃗1=(xp−a) x̂+ yp ĥ: r⃗2p=r⃗ p− r⃗2=(xp+ a ) x̂+ yp ŷ

r̂1p=
r⃗1p

∣⃗r1p∣
=
(xp−a ) x̂+ yp ŷ

√ (xp−a)2+ yp
2 : r̂2p=

r⃗2p

∣⃗r2p∣
=
(xp+ a ) x̂+ yp ŷ

√ (xp+ a)2+ yp
2

E⃗p=kq [ 1
(xp−a )2+ yp

2
(xp−a ) x̂+ yp ŷ
√ (xp−a )2+ yp

2 −
1

(xp−a)2+ yp
2
(xp+ a ) x̂+ yp ŷ
√ (xp+ a)2+ yp

2 ]
E⃗p=kq [ (xp−a ) x̂+ yp ŷ

[(xp−a )2+ yp
2]3 /2
−
(xp+ a ) x̂+ yp ŷ

[ (xp+ a )2+ yp
2]3/2 ]



r22 Physics 220: Worksheet 02 Name _______________

E⃗p=kq [ (xp−a ) x̂+ yp ŷ

[(xp−a )2+ yp
2]3 /2
−
(xp+ a ) x̂+ yp ŷ

[ (xp+ a )2+ yp
2 ]3/2 ]

To get the behavior at large distances, 

Note that if your dipole is not located at the origin, then do a coordinate translation (and
maybe a rotation) to put it there. However, with the more strict formulation, this is not
essential  so let's  see now what the electric  field is  for two equal but opposite  charges
located at two random points in the x-y plane.

1:(+q,x1,x2):2: (−q,x2,y2):p:(xp ,yp)
r⃗p=xp x̂+ yp ŷ : r⃗1=x1 x̂+ y1 ŷ: r⃗2=x2 x̂+ y2 ŷ

r⃗1p=(xp−x1) x̂+ (yp−y1) ŷ : r⃗2p=(xp−x2) x̂+ (yp−y2) ŷ

E⃗p=kq [ (xp−x1) x̂+ (yp−y1)ŷ
[(xp−x1)

2+ (yp−y1)
2 ]3 /2
−
(xp−x2) x̂+ (yp−y2) ŷ
[(xp−x2)

2+ (yp−y2)
2 ]3 /2 ]

At this point, step by step, you become more restrictive but the result above is a general
result.

So let both charges lie along the x-axis. With this restriction, we have:

E⃗p=kq [ (xp−x1) x̂+ (yp) ŷ
[(xp−x1)

2+ (yp)
2 ]3 /2
−
(xp−x2) x̂+ (yp) ŷ
[(xp−x2)

2+ (yp)
2 ]3 /2 ]

E⃗p=kq [ (xp−a) x̂+ (yp)ŷ
[(xp−a)2+ (yp)

2 ]3/2
−
(xp+ a) x̂+ (yp) ŷ
[(xp+ a)2+ (yp)

2]3 /2 ]
E⃗p=kq [ r⃗p−a⃗

[ r⃗p
2−2r⃗p⋅a⃗+ a2 ]3 /2

−
r⃗p+ a⃗

[ r⃗p
2+ 2 r⃗p⋅⃗a+ a2 ]3 /2 ] ; a⃗=a x̂

let ∣⃗rp∣≫∣⃗a∣

E⃗p=
kq
∣⃗rp∣

3/2 [ r⃗p−a⃗

[1−2 r̂p⋅⃗a
rp
+ ( arp )

2]
3/2−

r⃗p+ a⃗

[1+ 2 r̂p⋅a⃗
rp
+ ( arp )

2]
3 /2 ]

E⃗p=
kq
∣⃗rp∣

3/2 [ r⃗p−a⃗

[1−2 a
rp

cosθp+ ( arp )
2]

3 /2−
r⃗p+ a⃗

[1+ 2 a
rp

cosθp+ ( arp )
2]

3/2 ]
(1±x)−n=1∓nx+ n(n−1)

2! x2∓n(n−1)(n−2)
3! x2+ ... ;x2< 1
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E⃗p=
kq
∣⃗rp∣

3/2 [( r⃗ p−a⃗ )[1−3
2 (−2 a

rp
cosθp+ ( arp )

2)]−( r⃗p+ a⃗ )[1−3
2 (2 a

rp
cosθp+ ( arp )

2)]]
To lowest order:

E⃗p≈
k
∣⃗rp∣

3 /2 [−2qa⃗+ q r⃗p(6a
rp

cosθ−3 ( arp )
2)]= k
∣⃗rp∣

3/2 [−p⃗+ q r⃗p(6a
rp

cosθ)]= k
∣⃗rp∣

3/2 [ (3p⃗⋅r̂p) r̂p−p⃗ ]

So
E⃗p≈

k
∣⃗rp∣

3 /2 [ (3p⃗⋅r̂p) r̂p−p⃗ ]

Essentially this approximation of the dipole has reduced the dipole down to the extent that
the distance between charges is insignificant compared to the point in space. It may not be
valid for distributions where the net charge is not zero and also in the case that you are
close to the dipole, relative to the distance between the charges. The important thing to
keep in mind here is this: the dipole moment is only one of the terms in the multipole
expansion and usually it is the predominate term. Continuous charge distributions are most
easily done with calculus except is some special circumstances. So you are left with this:

p⃗=∑
allq i

qi r⃗ i

which is certainly an untidy way to write this but it contains the explicit understanding that
r⃗ i points  towards  spatial  regions  containing  charges  that  are  part  of  the  charge

distribution,  but  keep in  mind that  discrete charge distributions  and continuous  charge
distributions are different entities entirely.
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(4) Suppose in this case, your dipole had +q at x=a and -q at x=-a. Find an expression for
the electric field along the x-axis at x>a.  You should then be able to show that the electric
field behaves as E⃗p≈

4kqa x̂
xp

3 =2k p⃗
xp

3 at distant points along the x -axis.

In the previous problem, we had:

E⃗p=kq [ (xp−a) x̂+ (yp)ŷ
[(xp−a)2+ (yp)

2 ]3/2
−
(xp+ a) x̂+ (yp) ŷ
[(xp+ a)2+ (yp)

2]3 /2 ]
Here, allow yp to be zero. then this simplifies to become:

E⃗p=kq [ (xp−a) x̂
[(xp−a)2]3 /2

−
(xp+ a) x̂
[(xp+ a)2 ]3 /2 ]

Consider the case where xp−a> 0 :

E⃗p=kq [ 1
(xp−a )2

−
1

(xp+ a)2 ] x̂= kq
(xp−a )2 (xp+ a )2

[xp+ 2xp a+ a2−xp+ 2xpa−a2 ] x̂

= kq
(xp−a )2 (xp+ a )2

[4xpa ] x̂≈4kqax̂
xp

3 =2kp⃗
xp

3

You could also use the result above: E⃗p≈
k
∣⃗rp∣

3 /2 [ (3p⃗⋅r̂p) r̂p−p⃗ ] .In this case: E⃗p≈
k
xp

3 [2p⃗ ] .

Remember, however, our expression for the dipole,  E⃗p≈
k
∣⃗rp∣

3 /2 [ (3p⃗⋅r̂p) r̂p−p⃗ ] , is really only

valid  for  r>>a whereas  doing  the  exact  calculation  is  always  valid  (since  it  is  without
approximation). This means that you can not always start with the field for the dipole to
represent any dipole you run into! However at those times when you are in the correct
region for approximation, it is appropriate to use this result.
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(5) Suppose that you have a ring of radius r=a and total charge Q located in the x-y plane.
What is the electric field for points along the symmetry axis of this ring? How does this field
behave along the axis at distant points along the symmetry axis?

Non-calculus version
This  picture  showing  this  particular  situation  is  to  the  left.  The
symmetry of the problem allows me to say that the only components
of the electric field which survive will lie along the z-axis (i.e. the off-
axis components of the electric field cancel) at points along the z-
axis.
In this case, then, we have E⃗total=∑

j
E⃗ j=∑

j
∣⃗Ej∣r̂ jp .

The angle Θ is the same no matter where on the ring you look from the symmetry axis (at a
fixed zp) .  Also, the distance from the ring to the point zp is the same for every point along
the ring. To determine the electric field, write the charge on the ring in terms of the charge
density on the ring. If you consider that the ring has a total length given by: 2πa , the
total  charge Q on the ring is  given by:  Q=(2πa)λ   where I  am representing a linear
charge density here by . The electric field from a very small section at the top of the ring is
given by: E⃗ j+=

kqj

(a2+ zp
2)

zp ẑ−aŷ
√zp

2+ a2 where the subscript “+” means I’ve picked the point from

the top of the ring. The electric field coming from a point on the bottom of the ring (exactly
opposite from the previous position) is given by:

E⃗ j-=
k qj

(a2+ zp
2 )

zp ẑ+ a ŷ
√zp

2+ a2

If I add these two electric fields, I get the result:
E⃗ j++ E⃗ j-

=
2kqj

[a2+ zp
2 ]3 /2

zp ẑ

Now you need to determine how many such charge pairs there are on the ring. If you let
the small charge qj be represented by q j=λ (a(Δ ϕ))  where Δ ϕ  represents a small angle,

then we can rewrite the electric field as:
E⃗ j++ E⃗ j-=

2kλa (Δ ϕ )

[a2+ zp
2]3 /2

zpẑ

If we now let Δ ϕ   represent ½ of the total angle of the ring (which is 2π and remember,
I’m adding up charge pairs here), the electric field from the entire ring becomes:

E⃗ j++ E⃗ j-=
2k λa(π)
[a2+ zp

2 ]3 /2
zp ẑ

In terms of the total charge Q placed upon the ring, we thus have:
E⃗ j++ E⃗ j-=

kQzp

[a2+ zp
2 ]3 /2

ẑ

Let’s also look at how this behaves as x gets large.
(a2+ zp

2)−3/2
=zp

3(1+ a2

zp
2 )

3 /2
=zp

3(1+ 3
2

a2

zp
2 + ...)≈zp

3

At large distances, E⃗p≈
k Q
zp

2 ẑ (the ring looks a lot like a point charge).
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Here is a nice application of what you have learned that also ties some things together!

Suppose you have a crystal which has two positive charges located as shown
and an electron is located along the symmetry axis between the two charges
at a distance zp from the center which is very small compared to a. Let’s see
what happens.
This problem is unlike the dipole problem in that each of the charges is the
same. However,  looking at the non-calculus approach to the ring problem
(problem 5), it is immediately apparent what the electric field is along the
symmetry axis. The electric field is given by:

E⃗ j++ j-=
k (2q j)

[a2+ zp
2 ]

zp

√zp
2+ a2 ẑ= 2kqzp

[a2+ zp
2 ]3 /2

ẑ

Now we’re going to look at this expression in the limit that ∣zp∣≪a  . We again use the 
binomial expansion but we need to rewrite the denominator slightly.

[a2+ zp
2 ]3 /2=a3[1+ (zp

a )
2]

3/2

≈a3(1+ 3
2 (zp

a )
2
+ ...)

The leading term is then a3 which gives us the approximate electric field at the center as:
E⃗p≈

2keq
a3 zp ẑ

Now let’s find the electrostatic force on the electron which is trapped in such a situation.
This is easily seen to be given by:

F⃗=(qelectron) E⃗p=−eE⃗p=
−2keq

a3 zpẑ

This force is linear in the displacement variable and restoring. If you compare this force to
the Hooke’s law force (F⃗=−Κx x̂)  then you would expect to see the electron oscillate with
simple harmonic oscillation and thus would have a frequency given by:

ω=√ Κme
=√2keq

a3m3
⇒ f= 1

2π √2keq
a3me

You often hear that molecules act like springs connected to masses but this really shows
the effect. The electron will oscillate (and thus, it will store energy). The problem is that this
is a classical calculation. It is, however, very easy at this point, with a little bit of quantum
mechanics to obtain an energy spectrum for the electron trapped between two positively
charged ions like this!

The energy spectrum will be given by:
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En=ℏω(n+ 1
2 );n=1,2,3,... ;ω=√ Κme

Here, you also see Planck’s constant which is given by: ℏ= h
2π=1.0546x10−34 J⋅s
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Here  is  another  nice  application  related  to  the  electric  dipole.
Suppose that we apply a uniform electric field along the y-axis of
the dipole in problem 4. Assume an external electric field is given
by:

E⃗=Eŷ

The angle between p⃗  and E⃗  is . The angle between E⃗  and
p⃗  is . These two angles are related by: ϕ+ γ=3600 . The angle

between the positive x-axis and p⃗  is θ. 
The coordinates of the charges are:

r⃗+=acos(θ) x̂+ asin(θ) ŷ: r⃗ -=acos(θ+ 1800) x̂+ asin(θ+ 1800)ŷ

The torque on the positive charge is given by:

τ⃗+= r⃗+XF⃗+=∣ x̂ ŷ ẑ
acos(θ) asin(θ) 0

0 E∣q∣ 0∣=x̂ (0)−ŷ (0)+ ẑ (E∣q∣acos(θ))=E∣q∣acos(θ) ẑ

Since cos(β)=−cos(β+ 1800) , and the fact that the negative charge has a negative sign,
the torque from the negative charge is the same as for the positive charge.

τ⃗-=τ⃗+⇒Γ⃗=−2Ea∣q∣cos(θ) ẑ=∣⃗p∣∣⃗E∣cos(θ) ẑ

Now, there is also another connection:
γ+ 900=θ⇒ γ=θ−900

3600−γ=ϕ⇒3600−θ+ 900=4500−θ=ϕ⇒θ=4500−ϕ

We thus have the net torque on the dipole given as:
Γ=∣⃗p∣∣⃗E∣cos(4500−ϕ)ẑ=∣⃗p∣∣⃗E∣[cos(4500)cos(ϕ)+ sin(4500)sin(ϕ) ] ẑ
⇒Γ⃗=∣p∣∣E∣sin(ϕ) ẑ=p⃗X E⃗

where the angle is measured starting with the positive p⃗ axis and rotating around in the
positive manner (counterclockwise). On the other hand, if you want to relate this to the
angle γ  which starts along the Positive E direction and rotates counterclockwise towards
p,  then you have

sin(ϕ)=sin(3600−γ)=sin(3600)cos(γ )sin(γ)cos(3600)=−sin(γ)
Thus the torque is given by:
Γ⃗=−∣⃗p∣∣⃗E∣sin(γ) ẑ=p⃗X E⃗

Now here is why I worry so much about the sign of this torque: if the sign is wrong, simple
harmonic oscillation won’t  result  from the analysis  below. In particular,  you want to fix
yourself onto the electric field vector and watch the dipole oscillate about your reference
frame, rather than fixing yourself on the dipole and watching the electric field oscillate.
According to Newton’s laws, we have that a torque produces an angular acceleration:

Γ=Iα So the equation of motion is given by:
−∣⃗p∣∣⃗E∣sin(γ)=Iα⇒α=∣⃗p∣∣⃗E∣I sin(γ)=0
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Now if you consider only small angles, then:
sin(γ)≈γ

This means that simple harmonic oscillation will result with a frequency of oscillation given
by:

ω=√∣⃗p∣∣⃗E∣I =√ pE
2ma2=

√2qaE
2ma2 =√ qE

ma=2π f⇒ f= 1
2π √ qE

ma

As before, the energy spectrum of the oscillating dipole would be quantized and thus:
En=ℏω(n+ 1

2 );n=1,2,3,... ;ω=√ qE
ma

Here, you also see Planck’s constant which is given by:
ℏ= h

2π=1.0546x10−34 J⋅s
This is yet one more example of where concepts from the first semester are very important
in the second semester of physics for a more complete picture.

Incidentally, you’ll also need to know something about the electric polarization. The electric
polarization of  a material  P⃗  is  defined as the dipole moment per unit  volume of the
material. This can be difficult to calculate but it is a vector quantity.

You can also calculate the work required to orient a dipole from some angle θ (as I have
defined it above) to the x-axis to some angle (where θ=0).

W=−pEsin(θ)
A bit of calculus magic happened here.

Since
γ=θ−900⇒θ=γ+ 900⇒sin(θ)=sin(γ+ 900)=sinγcos(900)+ sin(900)cosγ=cos(γ)

we can rewrite this result in terms of the dot product.  Thus, in terms of the angle between
E⃗ and p⃗ , we have:

U=−p⃗⋅⃗E

Which would  correspond to the energy of  a dipole  in  an external  electric  field.  This  is
important classically for a lot of dipoles in an external electric field. You can do an average
over angles using Boltzman statistics to obtain an average angle (this leads to an equation
known as the Langevin equation). Note that the negative sign insures that when the dipole
moment is anti-aligned with the electric field, the energy is at a maximum.


