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is  a  correction  term which  Maxwell  included  because  otherwise,  Ampere’s  law  is
incomplete. You’ll find out more about this also in advanced courses. For now, it is
called the “displacement current.” 

Suppose you are in a charge and current free region of space. Then the last two
equations tell you that a change in magnetic flux produces an electric field and a
change  in  electric  flux  produces  a  magnetic  field.   We  can  show  (although,  the
mathematics is a bit advanced) that this results in a transverse Electromagnetic wave
which propagates with a velocity of

c=
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√ϵ0
 
μ0

 
=3x108m /s

This wave is described by an electric field vector which is perpendicular to a magnetic
field vector. The wave propagates in a direction which is perpendicular to both E and
B.

(A TEM wave is a transverse electromagentic wave)
Let's calculate the energy density of a TEM wave. The fields vary in time and space as

[E⃗B⃗]=[Em

Bm
]cos (k z−ω t )[x̂ŷ ] .

It turns out that the amplitudes Em and Bm are also related by
Em

Bm

=c and at each instant, 
E
B

=c  .

For a parallel plate capacitor, at one instant in time the electric energy density given
by 

uE=
1
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ϵ0E2 .

We actually need the time average of this quantity which is at one particular point in
space given by
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Likewise the magnetic field energy density is given by
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But, E and B are related by c and
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The electric and magnetic parts contribute equally to the energy density. Thus
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Poynting Vectors, intensity and other neat stuff

The direction of energy transport in a TEM wave is given by the same direction as

E⃗⨯B⃗  . In fact we can describe the rate of flow of energy in a TEM wave by a special
vector called the Poynting Vector which is define by

S⃗=
1
μ0

E⃗⨯B⃗

The magnitude of  the  Poynting  vector  represents  the  rate  at  which  energy  flows
through a unit surface area perpendicular to the flow. The SI units of S are [J/(sm2)] or
[W/m2].

If  we have a TEM wave, then there are lots  of  ways to write  S.  Let us make the
following simplifications:

E⃗=Emcos (kz−ω t ) x̂ is the Electric component of the TEM wave

B⃗=Bmcos (kz−ω t ) ŷ is the Magnetic component of the TEM wave
The instantaneous Poynting Vector is:

S⃗=
1
μ0

E⃗⨯B⃗=
EmBm

μ0
cos2

(kz−ω t ) ẑ

Note that I have used here the fact that x̂⨯ ŷ=ẑ  .

What  is  more  useful,  however  is  the  time  average  Poynting  vector.  This  is  easy
enough to calculate by now for my students because you know

<cos2
(ω t) >=

1
2

So we can now easily determine
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EmBm

2μ0

ẑ

We  have  a  special  term  for  the  time  average  Poynting  vector:  it  is  almost  an
intensity (I).
In general, we defined an intensity as a power/unit area in the first semester ... here it
is the same only we're really more interested in the time average power/unit area.



There are lots of ways to write <S>:
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ẑ

and the term 0c is called the impedance of free space:

μ0c=√
μ0
ϵ0

=377Ω

Hmm.. you might wonder why it’s like a resistance. Here’s a hand-waving argument:
S is like a power/area. Choose a region of space of area A with a normal parallel to S.
Then the power passing through this area is SA. Now look at the second form of S:

Power=
Em

2 A
2μ0c

 which is like < V2>
Z

⇒Z=μ0c

It is interesting (if not neat) to see how <S> is related to the time average energy
density.

We had earlier 

u=uE+ uB=ϵ0E
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It is immediately clear that the intensity and energy density are directly related by c:
I=<S⃗>⋅n̂=c<u>

where n̂ is the unit vector normal to an area which S is passing through.

Let's do an example now. Suppose a point source of electromagnetic radiation has an
average power output of 800 W. Calculate the maximum values of the electric and
magnetic fields at a point 3.50 m from the source.

Solution: For a point source of radiation (this also holds for distant stars and the like),

the intensity which is defined as  I=power
area

drops off as 1/r2. Why? Because you can

consider that the power is spread equally over spheres of increasing radii. Thus, the
surface area over which the power is spread is increasing as Area=4πR2  .Thus, the
intensity is

I=<power>
4πR2

.

We also know that the intensity is related to the average energy density so

I=c<u>=
<power >

4πR2

We know what <u> is for a TEM wave and we are given what <power> is, so we can
put all this together now to calculate Em and Bm: since 
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=
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 which gives 
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It is easiest now to calculate Bm from the relation 
Em

Bm

=c  'every body claps ; ) ...

 Bm=
Em

c
=

62.6
3x108

=2.09 x10−7 T

In a more advanced course, you’ll find out that TEM waves are the only types of EM
waves  that  can  propagate  in  free  space.  Inside  of  cavities  with  cross  sections
approaching  several  wavelengths,  these waves  can not  propagate  (perhaps  I  can
qualify this by saying “very successfully”).



TEM waves transport momentum! (radiation pressure)
Recall the average energy density of a TEM wave:

<u>=ϵ0<E2>=
1
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ϵ0Em
2
=
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2
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Now, also think back to what an energy density is ... it is a pressure.
We obtained a pressure when we looked at the kinetic theory of an ideal gas:

pressure≡
force
area

=
(Δ momentum

Δ time )
area

Well let's equate this to the average energy density:
<u>⋅A⋅Δ t=Δ p

Let's suppose we have a square of area A of the TEM wave which is propagating
along. Then in a time t, the square will sweep out a volume given by A ct. Thus, we
can use this to determine the total energy contained in the rectangular surface:

<U>=<u> AcΔ t

We reach the conclusion that the momentum contained in the TEM wave is given by
U
c

=p

so long as the TEM wave is completely absorbed by a surface ... if it bounces off of a
surface, then there is a factor of 2 involved. Technically, I suppose you could say that
this is due to a "re-radiation" from the reflecting surface ... the TEM wave does not
really contain 2x the momentum just because it hits a reflecting surface.

Let's relate this to radiation pressure since someday you might want to use a solar
sail to send a spaceship out of our solar system: The energy is given by U=pc  so

the rate of change of energy is  
Δ U
Δ t

=power=c Δ p
Δ t

 .But,  
Δ p
Δ t

=F  (a force) and so

the pressure is defined by F/A. But this is exactly the time average Poynting vector
thus:

<S>
c

=P  (P is the radiation pressure)

If your sail is made of a completely black material the it delivers a momentum p=
U
c

where as if your sail is completely reflecting, it delivers twice the momentum or

p=
2U
c

 .

The radiation pressure on a completely reflecting surface is then 2<S>
c

=P  

Example: The sun delivers about 1000 W/m2 of electromagnetic flux to the earth's
surface.  Calculate the  total  power  that  is  incident  on a  roof  of  200 m2 and then
determine the radiation pressure and the radiation force on the roof if it is a perfect
reflector.



Solution: Power=<S>A=1000x200 = 2x105 W. Since the roof is completely reflecting,
the  radiation  pressure  is  Pressure=2<S>/c=2000/3x108=6.67x10-6 N/m2.  The  total
radiation force on the roof is then Force=Pressure x Area=6.67x10-6x200=1.33x10-3N.

Note: Lasers are capable of providing much higher values for <s> and in fact, it is
possible to move objects with laser light (so called optical tweasers).



One final fantastic calculation to wrap it all up!
Suppose a conducting sheet is lying in the xy plane as shown. The
sheet  is  carrying  a  surface  current  per  unit  length  Js.  We  will
assume that Js=J0cos(t).  We want to be able to describe the TEM
wave which  propagates  from this  current  sheet.  I  suppose it’s
appropriate to think of the plane as if it were an infinitely wide
ribbon cable. Each wire in the cable carries a current I.

Note:  this  is  one of  the few cases where we really  get  a true
planar TEM wave. A wire, for example, produces a cylindrical TEM wave, in which case
the intensity decreases with distance.
Solution:  we  earlier  have  solved  the  problem  of  the  infinite  current  sheet  with

Ampere's law. This gave the result that (you can verify this) Bx=−μ0

Js

2
 . Here, since

Js varies in time, this solution is really only going to be valid at points right next to the

sheet.  Thus,  at  the sheet of  current  we have the result  Bx=−
μ0

2
J0 cos (ω t )  .  This

magnetic field has got to propagate in free space according to Maxwell's equations
which say that it will be a TEM wave. Thus, as the magnetic field travels from the
current sheet, it will obey:

Bx=−
μ0

2
J0 cos (k x−ω t ) x̂ . 

The corresponding electric field will be easily related to the magnetic field: it must lie
along  the  y  axis  in  it's  going  to  have  a  -  sign  since  B  has  a  -  sign.  Thus:

Ey=−
μ0c
2

J0cos (kx−ω t) ŷ . The Poynting vector is then given by

S⃗=
1
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2
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cos2 (kx−ω t ) ẑ .

 In order to calculate the intensity of the TEM wave, we'll want to calculate <S>. Thus:

. But, you need to remember that the current sheet is also producing a

TEM wave propagating  along the  -z  direction.  This  requires  that  the total  rate  of
energy emitted per unit area of the conductor is 2<S⃗>⋅n̂  .

Suppose the current sheet has a current density with a maximum value of 5 A/m (one
way to think of this: you have, in 1 m, 5 wires, each carrying a current of 1A). Find the
maximum values  of  the  radiated  magnetic  and  electric  fields.  Then,  what  is  the
maximum power incident on a second (completely absorbing) sheet parallel to the
first sheet with an area of 3m2?

Bm=
μ0 J0
2

 and Em=
μ0 J0c

2
.

So Bm=
4πx1007x5

2
=3.14x10−6 T  and so Em=3x108xBm=942V /m

The power is then the intensity x area or

power=
μ0c J0

2

8
x3=

4πx10−7
(3x108

)x(52
)

8
x3=3.54x103 W


