A converging lens of focal length $f=10 \mathrm{~cm}$ has an image located at $\mathrm{s}^{\prime}=50 \mathrm{~cm}$. Find the object position and characterize the image.

A diverging lens of focal length $f=20 \mathrm{~cm}$ has a virtual object located at 2 cm . Characterize the resulting image.

A converging lens of focal length f has a real image located at 2 f . Is this possible and what is the magnification of the image? Give the complete characterization.

Physics 220: Unquiz 07

A converging lens of focal length $f=10 \mathrm{~cm}$ has an image located at $\mathrm{s}^{\prime}=50 \mathrm{~cm}$. Find the object position and characterize the image.

$$
\begin{aligned}
& \frac{1}{s}=\frac{1}{f}-\frac{1}{s^{\prime}}{ }^{\prime} \Rightarrow \frac{1}{10}-\frac{1}{50}=\frac{5-1}{50}=\frac{4}{50} \Rightarrow s=\frac{50}{4}=\frac{25}{2}=12.5 \\
& M=\frac{-s^{\prime}}{s}=\frac{-50}{12.5}=-4
\end{aligned}
$$

Image is inverted, enlarged, real
A diverging lens of focal length $\mathrm{f}=20 \mathrm{~cm}$ has a virtual object located at 2 cm . Characterize the resulting image.
$\frac{1}{\mathrm{~s}}+\frac{1}{\mathrm{~s}^{\prime}}=\frac{1}{\mathrm{f}} \Rightarrow \frac{1}{\mathrm{~s}^{\prime}}=\frac{1}{\mathrm{f}}-\frac{1}{\mathrm{~s}}=\frac{1}{-20}-\frac{1}{-2}=\frac{-1+10}{20}=\frac{9}{20} \Rightarrow \mathrm{~s}^{\prime}=2.22: \mathrm{M}=-\frac{\mathrm{s}^{\prime}}{\mathrm{s}}=-\frac{2.22}{2}=-1.111$
Image is inverted, enlarged,
A converging lens of focal length f has a real image located at $2 f$. Is this possible and what is the magnification of the image? Give the complete characterization.

$$
\begin{gathered}
\frac{1}{s}=\frac{1}{f}-\frac{1}{2 f}=\frac{2-1}{2}=\frac{1}{f} \Rightarrow s=f \\
M=-\frac{s^{\prime}}{s}=-\frac{2 f}{f}=-2
\end{gathered}
$$

