(1) A material having an index of refraction of 1.20 is used to coat a piece of glass (n=1.60). What is the minimum film thickness to minimize reflected light of 470 nm? What is the minimum film thickness to maximize reflected light of 470 nm?

(2) A soap film (n=1.3) has a thickness of 800 nm. What wavelengths of visible light will be reflected?

(3) A thin layer of liquid with n=1.8 is on top of a slide of glass (n=1.5). What is the minimum thickness of this film if light with $\lambda=600$ nm is to be reflected?

(4) A laser beam (λ =600 nm) is incident upon two slits 0.2 x10⁻³ m apart. How far will the bright interference lines be on a screen 10 m from the slits?

(5) Suppose the slits in Young's experiment are 0.15×10^{-3} m apart and when the pattern shines on a screen 1.0 m away, the third bright band is 10.0×10^{-3} m away from the central maximum. What is the wavelength of the light?

(1) A material having an index of refraction of 1.20 is used to coat a piece of glass (n=1.60). What is the minimum film thickness to minimize reflected light of 470 nm? What is the minimum film thickness to maximize reflected light of 470 nm? Solution: This material is assumed to be in air. Ray r1 If we order to indices of refraction then we have n1 < n2 and n2 < n3. This corresponds to case 2 in the notes:

Constructive: $2n_2t = m\lambda$ for $m = \{1, 2, 3, ...\}$

Destructive: $2n_2 t = \left(m + \frac{1}{2}\right)\lambda$ for $m = \{0,1,2,3,...\}$

To minimize reflected light, we require

$$t = \frac{\left(m + \frac{1}{2}\right)\lambda}{2n_2}$$

The minimum thickness where this occurs is for m=0. Thus

$$t_{min} = \frac{\lambda}{4 n_2} = \frac{470 \text{ nm}}{4 \times 1.20} = 97.9 \text{ nm}$$

To maximize the reflected light, we need the condition for constructive interference:

$$t = \frac{m\lambda}{2n_2}$$

The minimum thickness will happen for m=1 here. Thus

$$t_{min} = \frac{1 \times \lambda}{2 \times n_2} = \frac{470 \text{ nm}}{2 \times 1.20} = 195.8 \text{ nm}$$

(2) A soap film (n=1.3) has a thickness of 800 nm. What wavelengths of visible light will be reflected?

Solution: this condition corresponds to case 1 where

Constructive:
$$2n_2t = \left(m + \frac{1}{2}\right)\lambda$$
 for $m = \{0,1,2,3,...\}$.

Let's look for wavelengths between 700 and 400 nm. Solving this condition gives: $2080=(m+1/2)\lambda \Rightarrow \lambda=2080/(m+1/2)$. We thus have the following cases:

M	λ
0	4160
1	1387
2	832
3	594
4	462
5	378

Of these, only 594 nm and 462 nm lie in the required range (m=3, m=4).

(3) A thin layer of liquid with n=1.8 is on top of a slide of glass (n=1.5). What is the minimum thickness of this film if light with $\lambda=600$ nm is to be reflected?

Solution: this corresponds to case 2 with constructive interference:

Constructive:
$$2n_2t = \left(m + \frac{1}{2}\right)\lambda$$
 for $m = \{0,1,2,3,...\}$.

We can solve for this thickness:

$$t_{min} = \frac{\lambda}{4n} = \frac{600}{4x1.8} = 83nm$$

(4) A laser beam (λ =600 nm) is incident upon two slits 0.2 x10⁻³ m apart. How far will the bright interference lines be on a screen 10 m from the slits? Solution: From the notes,

Constructive:
$$\delta = m\lambda \ \{ \ m = 0, \pm 1, \pm 2, ... \}$$

band positions: $Y = \frac{m\lambda L}{d}$

We need to find ΔY which is the separation between any two bright bands. This is given by

$$\Delta Y = \frac{(m+1)\lambda L}{d} - \frac{m\lambda L}{d} = \frac{\lambda L}{d}$$
$$\Delta Y = \frac{600 \times 10^{-9} \times 10}{0.2 \times 10^{-3}} = 3 \times 10^{-2} \, \text{m}$$

(5) Suppose the slits in Young's experiment are 0.15×10^{-3} m apart and when the pattern shines on a screen 1.0 m away, the third bright band is 10.0×10^{-3} m away from the central maximum. What is the wavelength of the light? Solution: From the notes,

Constructive:
$$\delta = m\lambda \{ m = 0, \pm 1, \pm 2, ... \}$$

band positions: $Y = \frac{m\lambda L}{d}$

Here, m=3,
$$Y_3 = 10x10^{-3}$$
, L=1.0, and d=0.15x10⁻³. So
$$\lambda = \frac{Yd}{3L} = \frac{10x10^{-3}x0.15x10^{-3}}{3x1.0} \Rightarrow \lambda = 500\,\text{nm}$$