(1) A material having an index of refraction of 1.20 is used to coat a piece of glass ($\mathrm{n}=1.60$). What is the minimum film thickness to minimize reflected light of 470 nm ? What is the minimum film thickness to maximize reflected light of 470 nm ?
(2) A soap film ($n=1.3$) has a thickness of 800 nm . What wavelengths of visible light will be reflected?
(3) A thin layer of liquid with $n=1.8$ is on top of a slide of glass $(n=1.5)$. What is the minimum thickness of this film if light with $\lambda=600 \mathrm{~nm}$ is to be reflected?
(4) A laser beam ($\lambda=600 \mathrm{~nm}$) is incident upon two slits $0.2 \times 10^{-3} \mathrm{~m}$ apart. How far will the bright interference lines be on a screen 10 m from the slits?
(5) Suppose the slits in Young's experiment are $0.15 \times 10^{-3} \mathrm{~m}$ apart and when the pattern shines on a screen 1.0 m away, the third bright band is $10.0 \times 10^{-3} \mathrm{~m}$ away from the central maximum. What is the wavelength of the light?
(1) A material having an index of refraction of 1.20 is used to coat a piece of glass ($\mathrm{n}=1.60$). What is the minimum film thickness to minimize reflected light of 470 nm ? What is the minimum film thickness to maximize reflected light of 470 nm ? Solution: This material is assumed to be in air. Ray rl If we order to indices of refraction then we have $\mathrm{n} 1<\mathrm{n} 2$ and $\mathrm{n} 2<\mathrm{n} 3$. This corresponds to case 2 in the notes:
Constructive: $2 \mathrm{n}_{2} \mathrm{t}=\mathrm{m} \lambda$ for $\mathrm{m}=\{1,2,3, \ldots\}$
Destructive: $2 n_{2} t=\left(m+\frac{1}{2}\right) \lambda$ for $m=\{0,1,2,3, \ldots\}$
To minimize reflected light, we require

$$
\mathrm{t}=\frac{\left(\mathrm{m}+\frac{1}{2}\right) \lambda}{2 \mathrm{n}_{2}} .
$$

The minimum thickness where this occurs is for $m=0$. Thus

$$
\mathrm{t}_{\min }=\frac{\lambda}{4 \mathrm{n}_{2}}=\frac{470 \mathrm{~nm}}{4 \times 1.20}=97.9 \mathrm{~nm}
$$

To maximize the reflected light, we need the condition for constructive interference:

$$
\mathrm{t}=\frac{\mathrm{m} \lambda}{2 \mathrm{n}_{2}}
$$

The minimum thickness will happen for $\mathrm{m}=1$ here. Thus

$$
\mathrm{t}_{\min }=\frac{1 \times \lambda}{2 \times \mathrm{n}_{2}}=\frac{470 \mathrm{~nm}}{2 \times 1.20}=195.8 \mathrm{~nm}
$$

(2) A soap film ($\mathrm{n}=1.3$) has a thickness of 800 nm . What wavelengths of visible light will be reflected?
Solution: this condition corresponds to case 1 where Constructive: $2 \mathrm{n}_{2} \mathrm{t}=\left(\mathrm{m}+\frac{1}{2}\right) \lambda$ for $\mathrm{m}=\{0,1,2,3, \ldots\}$.

Let's look for wavelengths between 700 and 400 nm . Solving this condition gives: $2080=(m+1 / 2) \lambda \Rightarrow \lambda=2080 /(m+1 / 2)$. We thus have the following cases:

M	λ
0	4160
1	1387
2	832
3	594
4	462
5	378

Of these, only 594 nm and 462 nm lie in the required range $(\mathrm{m}=3, \mathrm{~m}=4)$.
(3) A thin layer of liquid with $n=1.8$ is on top of a slide of glass $(n=1.5)$. What is the minimum thickness of this film if light with $\lambda=600 \mathrm{~nm}$ is to be reflected?

Solution: this corresponds to case 2 with constructive interference:
Constructive: $2 \mathrm{n}_{2} \mathrm{t}=\left(\mathrm{m}+\frac{1}{2}\right) \lambda$ for $\mathrm{m}=\{0,1,2,3, \ldots\}$.
We can solve for this thickness:

$$
\mathrm{t}_{\min }=\frac{\lambda}{4 \mathrm{n}}=\frac{600}{4 \times 1.8}=83 \mathrm{~nm}
$$

(4) A laser beam ($\lambda=600 \mathrm{~nm}$) is incident upon two slits $0.2 \times 10^{-3} \mathrm{~m}$ apart. How far will the bright interference lines be on a screen 10 m from the slits?
Solution: From the notes,

$$
\begin{aligned}
& \text { Constructive: } \delta=m \lambda\{m=0, \pm 1, \pm 2, \ldots\} \\
& \text { band positions: } Y=\frac{m \lambda L}{d}
\end{aligned}
$$

We need to find ΔY which is the separation between any two bright bands. This is given by

$$
\begin{gathered}
\Delta Y=\frac{(m+1) \lambda L}{d}-\frac{m \lambda L}{d}=\frac{\lambda L}{d} \\
\Delta Y=\frac{600 \times 10^{-9} \times 10}{0.2 \times 10^{-3}}=3 \times 10^{-2} \mathrm{~m}
\end{gathered}
$$

(5) Suppose the slits in Young's experiment are $0.15 \times 10^{-3} \mathrm{~m}$ apart and when the pattern shines on a screen 1.0 m away, the third bright band is $10.0 \times 10^{-3} \mathrm{~m}$ away from the central maximum. What is the wavelength of the light?
Solution: From the notes,

$$
\begin{gathered}
\text { Constructive: } \delta=m \lambda\{\mathrm{~m}=0, \pm 1, \pm 2, \ldots\} \\
\text { band positions: } Y=\frac{m \lambda L}{d}
\end{gathered}
$$

Here, $m=3, Y_{3}=10 \times 10^{-3}, L=1.0$, and $d=0.15 \times 10^{-3}$. So

$$
\lambda=\frac{\mathrm{Yd}}{3 \mathrm{~L}}=\frac{10 \times 10^{-3} \times 0.15 \times 10^{-3}}{3 \times 1.0} \Rightarrow \lambda=500 \mathrm{~nm}
$$

