(1) A lens produces a virtual image of an object which is upright and 2 cm high when a 1 cm high object is placed 20 cm from the lens. What is the focal length of the lens and what is the image position?
(2) A lens produces a real image of an object which is inverted and 2 cm high when a 1 cm high object is placed 20 cm from the lens. What is the focal length of the lens and what is the image position?
(3) Some examples of virtual objects:

Suppose a virtual object is located 10 cm behind a diverging lens with a focal length of 5 cm . Characterize the resulting image.
(4) Suppose a virtual object is located 10 cm behind a converging lens with a focal length of 5 cm . Characterize the resulting image.
(5) Where must an object be located if a real image at 10 cm results from a diverging lens with a focal length of 15 cm ? Characterize the resulting image if the object is upright.
(6) An object is at a distance $s_{0}$ from a converging lens of focal length $f\left(s_{0}>f\right)$. The object is moving towards the lens with a speed $v$. How fast is the point at which the image would form moving at all times?
(1) A lens produces a virtual image of an object which is upright and 2 cm high when a 1 cm high object is placed 20 cm from the lens. What is the focal length of the lens and what is the image position?
$\mathrm{M}=\frac{\mathrm{h}^{\prime}}{\mathrm{h}}=+2=-\frac{\mathrm{s}^{\prime}}{\mathrm{s}}=-\frac{\mathrm{s}^{\prime}}{+20} \Rightarrow \mathrm{~s}^{\prime}=-40$
$\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \Rightarrow \frac{1}{+20}-\frac{1}{40}=\frac{2-1}{40}=\frac{1}{40}=\frac{1}{f} \Rightarrow \mathrm{f}=+40 \mathrm{~cm}$
Notice that it's not possible here to have a real image in this situation.
(2) A lens produces a real image of an object which is inverted and 2 cm high when a 1 cm high object is placed 20 cm from the lens. What is the focal length of the lens and what is the image position?
$M=\frac{h^{\prime}}{\mathrm{h}}=-2=-\frac{\mathrm{s}^{\prime}}{\mathrm{s}}=-\frac{\mathrm{s}^{\prime}}{+20} \Rightarrow \mathrm{~s}^{\prime}=+40$
$\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \Rightarrow \frac{1}{+20}+\frac{1}{400}=\frac{2+1}{40}=\frac{3}{40}=\frac{1}{f} \Rightarrow \mathrm{f}=+\frac{40}{3}=+13.3 \mathrm{~cm}$
(3) Some examples of virtual objects:

Suppose a virtual object is located 10 cm behind a diverging lens with a focal length of 5 cm . Characterize the resulting image.

Since the object is virtual, we have $s=-10 \mathrm{~cm}$. This could have been created as the result of a second lens. Now we can find the image position from the thin lens equation:

$$
\begin{aligned}
& \frac{1}{s^{\prime}}=\frac{1}{f}-\frac{1}{s}=\frac{1}{-5}-\frac{1}{-10}=-\frac{2}{10}+\frac{1}{10}=-\frac{1}{10} \Rightarrow s^{\prime}=-10 \mathrm{~cm} \\
& M=-\frac{s^{\prime}}{5}=-\frac{-10}{-10}=-1
\end{aligned}
$$

The image is: [virtual:unmagnified:inverted]
(4) Suppose a virtual object is located 10 cm behind a converging lens with a focal length of 5 cm . Characterize the resulting image.
$\frac{1}{s^{\prime}}=\frac{1}{f}-\frac{1}{s}=\frac{1}{+5}-\frac{1}{-10}=\frac{2}{10}+\frac{1}{10}=+\frac{3}{10} \Rightarrow s^{\prime}=+\frac{10}{3}=+3.33 \mathrm{~cm}$
$\mathrm{M}=-\frac{s^{\prime}}{\mathrm{s}}=-\frac{+3.33}{-10}=+0.333$
The image is: [real:reduced:upright]
(5) Where must an object be located if a real image at 10 cm results from a diverging lens with a focal length of 15 cm ? Characterize the resulting image if the object is upright.
$\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \Rightarrow \frac{1}{s}=\frac{1}{f}-\frac{1}{s^{\prime}}=\frac{1}{-15}-\frac{1}{410}=\frac{-2-3}{30}=-\frac{5}{30}=-\frac{1}{6} \Rightarrow \mathrm{~s}=-6 \mathrm{~cm}$
$\mathrm{M}=-\frac{s^{\prime}}{\mathrm{s}}=-\frac{+10}{-6}=+1.67$
The image is: [real: enlarged:upright]
(6) An object is at a distance $s_{0}$ from a converging lens of focal length $f\left(s_{0}>f\right)$. The object is moving towards the lens with a speed $v$. How fast is the point at which the image would form moving at all times?

$$
\frac{1}{s^{\prime}}=\frac{1}{f}-\frac{1}{s}=\frac{s_{0}-v-f}{f\left(s_{0}-V t\right)} \Rightarrow S^{\prime}=\frac{f\left(s_{0}-V t\right)}{s_{0}-V t-f}
$$

The speed of the image is given by:

$$
V^{\prime}=\frac{\Delta s^{\prime}}{\Delta t}=\frac{f(-v)}{s_{0} v t-f}-\frac{f\left(s_{0}-v t\right)}{\left[s_{0}-v t-f\right]^{2}}(-v)=-\frac{f v}{\left[s_{0} v t-f\right]}\left\{1-\frac{s_{0}-v t}{s_{0}-v t-f}\right\}=-\frac{f v}{\left[s_{0}-v t-f\right]}\left\{\frac{s_{0}-v t-f-s_{0}+v t}{\left[s_{0} v t-f\right]}\right\}=\frac{f^{2} v}{\left[s_{0} v t-f\right]^{2}}
$$

At one point, this speed will be infinite. There is not really any information contained in this fact so it does not violate relativity. I have, however, been very careful with my words in the statement of this problem. When does the speed become infinite? This is when

$$
s_{0}-v t-f=0 \Rightarrow v t=s_{0}-f \Rightarrow t=\frac{s_{0}-f}{v}
$$

What is the object location at this time?

$$
s=s_{0}-v t=s_{0}-v\left[\frac{s_{0}-f}{v}\right]=s-s_{0}+f=f .
$$

When the object reaches the focal length, the point at which the image forms would move infinitely fast (it would take light a while to catch up with this point).

