

$$
\mathrm{v}=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t})
$$

The voltage drop across the resistor, v_{r} is equal to the instantaneous applied voltage, v . Thus $\mathrm{v}_{\mathrm{r}}=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t})$. The instantaneous current is equal to

$$
\mathrm{i}=\frac{\mathrm{v}_{\mathrm{r}}}{\mathrm{R}}=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{R}} \sin (\omega \mathrm{t}) .
$$

The peak current is given by $\mathrm{I}_{\mathrm{m}}=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{R}}$.
 The instantaneous voltage drop across the resistor is

$$
v_{r}=I_{m} R \sin (\omega t)
$$

and the current is said to be in phase with the voltage.
We need to calculate the time-average power radiated by the resistor. The instantaneous power radiated by the resistor is given by

$$
p=i^{2} R
$$

where i is the instantaneous current. We can calculate the time average power by using a slick trick that you have seen me use before. ...

$$
\left.\langle P\rangle=\left\langle i^{2} R\right\rangle=I_{m}^{2} R<\sin ^{2}(\omega t)\right\rangle=\frac{V_{m}^{2}}{R}\left\langle\sin ^{2}(\omega t)\right\rangle
$$

To evaluate the time average of $\left\langle\sin ^{2}(\omega \mathrm{t})\right\rangle$, consider the trigonometric relation: $\sin ^{2} \theta+\cos ^{2} \theta=1$. The time average of 1 is $1:<1>=1$, and the $\sin ^{2} \theta$ behaves exactly like the $\cos ^{2} \theta$ and so by symmetry, both of these must contribute equally to the time average. Thus we reach the conclusion that $\left\langle\sin ^{2}(\omega \mathrm{t})\right\rangle=\frac{1}{2}$. Thus,

$$
\langle P\rangle=\frac{V_{m}^{2}}{2 R}=\frac{I_{m}^{2} R}{2}
$$

We know also that the instantaneous power is also given by $p=i v$. For AC circuits satisfying these conditions, we redefine I to be $I_{r m s}$ and V to be $V_{r m s}$ by

$$
\left.I_{r m s} \equiv \frac{I_{m}}{\sqrt{2}} \text { and } V_{r m s} \equiv \frac{V_{m}}{\sqrt{2}} \text { so we can write }<P\right\rangle=I_{r m s} V_{r m s}
$$

Note this is true only for the initial assumptions in this problem.!!!! In particular if we have capacitance and inductance in the circuit, this must be modified by a factor known as the "power factor" which comes later.

$v=V_{m} \sin (\omega t)$

This analysis is valid if the circuit contains only a capacitor and the applied voltage must vary as:

$$
\mathrm{v}=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}) .
$$

The instantaneous voltage drop across the capacitor is $\mathrm{v}_{\mathrm{c}}=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t})$. The instantaneous current is then (through the magic of calculus):

$$
\mathrm{i}_{\mathrm{c}}=\omega \mathrm{CV} \cos (\omega \mathrm{t}) .
$$

Notice that the current is not in phase with the applied voltage. We can show this most clearly by rewriting the current as

$$
\mathrm{i}_{\mathrm{c}}=\omega C \mathrm{~V}_{\mathrm{m}} \sin \left(\omega \mathrm{t}+\frac{\pi}{2}\right) .
$$

The current reaches its peak value $1 / 4$ of a cycle sooner than the voltage reaches its peak value. For this reason, in this type of circuit obeying the initial assumptions it is said that the current always leads the voltage across a capacitor by 90°.

The peak current in the circuit is given by $\mathrm{I}_{\mathrm{m}}=\omega \mathrm{CV}_{\mathrm{m}}$. We want to define a new quantity called the capacitive reactance:

$$
X_{C} \equiv \frac{1}{\omega C}
$$

so that the instantaneous voltage drop across the capacitor is given by

$$
\mathrm{v}_{\mathrm{C}}=\mathrm{I}_{\mathrm{m}} \mathrm{X}_{\mathrm{C}} \sin (\omega \mathrm{t}) .
$$

Note that the units of capacitive reactance are those of Ohms! You can show this since $\mathrm{c}=\mathrm{Q} / \mathrm{V}$ and ω has units of "rad"/s so $\left[\mathrm{X}_{\mathrm{c}}\right]=[\mathrm{V} / \mathrm{I}]=$ Ohms.
This analysis is valid if the circuit contains only an inductor and the applied voltage must vary as:

$$
\mathrm{v}=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}) .
$$

$v=V_{m} \sin (\omega t)$

The instantaneous voltage drop across the inductor is

$$
\mathrm{v}-\mathrm{L} \frac{\Delta \mathrm{I}}{\Delta \mathrm{t}}=0
$$

The instantaneous current is then given by (through the magic of calculus)

$$
\mathrm{i}_{\mathrm{L}}=\frac{-\mathrm{V}_{\mathrm{m}}}{\omega \mathrm{~L}} \cos (\omega \mathrm{t})
$$

We can rewrite this in terms of the \sin as

$$
i_{L}=\frac{V_{m}}{\omega L} \sin \left(\omega t-\frac{\pi}{2}\right)
$$

The current reaches its peak value $1 / 4$ of a cycle later than the voltage reaches its peak value. For this reason, in this type of circuit obeying the initial assumptions it is said that the current always lags the voltage across an inductor by 90°.

The peak current through the inductor is given by

$$
\mathrm{I}_{\mathrm{m}}=\frac{\mathrm{V}_{\mathrm{m}}}{\omega \mathrm{~L}}
$$

We want to define a new quantity called the inductive reactance:

$$
X_{L} \equiv \omega \mathrm{~L}
$$

so that the instantaneous voltage drop across the inductor is given by

$$
v_{L}=I_{m} X_{L} \sin (\omega t) .
$$

Note that the units of inductive reactance are those of Ohms! You can show this since $[\mathrm{L}]=[\mathrm{Vt} / \mathrm{A}]$ and ω has units of "rad"/s so $\left[\mathrm{X}_{\mathrm{c}}\right]=[\mathrm{V} / \mathrm{I}]=$ Ohms.

$$
v=v_{m} \sin (\omega t)
$$

This analysis is strictly valid ONLY for the series RLC circuit. For other configurations, you must consider other methods for combining the reactances.

$$
\text { Reactance: } \quad X_{C} \equiv \frac{1}{\omega \mathrm{C}} \quad \mathrm{X}_{\mathrm{L}} \equiv \omega \mathrm{~L}
$$

Treat the various voltages across the various elements as vectors and find the magnitude:

$$
|\vec{V}|=\left|\vec{V}_{\mathrm{R}}+\overrightarrow{\mathrm{V}}_{\mathrm{C}}+\overrightarrow{\mathrm{V}}_{\mathrm{L}}\right|=\sqrt{\mathrm{V}_{\mathrm{R}}^{2}+\left(\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{C}}\right)^{2}}
$$

In terms of the reactance, then

$$
V_{R}=I_{m} R: V_{L}=I_{m} X_{L}: V_{C}=I_{m} X_{C}
$$

So the magnitude of V_{m} is given by

$$
|\vec{V}|=V_{m}=I_{m} \sqrt{R^{2}+\left(X_{L}-X_{c}\right)^{2}}=I_{m} Z
$$

where Z is called the impendence of the circuit and the angle that V_{m} makes with respect to the current is given by

$$
\tan (\phi)=\frac{\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}}{\mathrm{R}}
$$

Now you can easily see that the time average power radiated by the RLC circuit is given by

$$
\langle P\rangle=I_{\text {RMS }} \vee_{\text {RMS }} \cos (\phi)
$$

where the last term is the "power factor". You will also notice that resonance occurs when $X_{c}=X_{L}$. This then gives the resonance frequency:

$$
\omega=\frac{1}{\sqrt{\mathrm{LC}}}
$$

2 filter circuits: The high-pass filter and the low pass filter.

 The easiest way to remember how to treat RC filter circuits is to look at the capacitive reactance, X_{c}. For low frequencies, capacitor acts like on open circuit. For high frequencies, the capacitor acts like a short circuit. We'll get the intermediate response here also.1. The high-pass filter. We want to look for the ratio of $\mathrm{V}_{\text {out }}$ to $\mathrm{V}_{\text {in }}$. This is given by the high-pass response function which is also called the circuit gain A_{v} :

$$
A_{v}=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{I_{m} R}{I_{m} Z}=\frac{R}{\sqrt{R^{2}+X_{C}^{2}}}=\frac{R}{\sqrt{R^{2}+\left(\frac{1}{\omega C}\right)^{2}}}=\frac{\omega R C}{\sqrt{(\omega R C)^{2}+1}}
$$

Notice that the HF response is that which would happen for the capacitor if it were replaced by a piece of wire.
2. The low-pass filter. We want to look for the ratio of $\mathrm{V}_{\text {out }}$ to $\mathrm{V}_{\text {in }}$. This is given by the low-pass response function which is also called the circuit gain, A_{v} :

$$
A_{v}=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{I_{m} X_{c}}{I_{m} Z}=\frac{\left(\frac{1}{\omega C}\right)}{\sqrt{R^{2}+\left(\frac{1}{\omega C}\right)^{2}}}=\frac{1}{\sqrt{(\omega R C)^{2}+1}}
$$

Note that at high frequencies, this acts much like a short across the capacitor. Now a question for you: suppose you replace the capacitor in these two circuits with an inductor. What are the response functions in those cases?

