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(1) Consider the torrid consisting of N turns as shown. Assume
that the winding is tight enough so that edge effects are not
important. Calculate the magnetic field inside the torrid from
Ampere's law.

Solution: On the brown path, we have (from the right hand
rule)  that  B  circulates  around  as  shown.  The  windings  are
assumed to be close enough so that B does not really come
out of the inside of  the torrid.  This is  usually reinforced by

making the torrid out of a ferrite which serves to trap the magnetic field lines. Iron is
an example of such a material.  On the (brown) path shown, then we have:

∑
curve

B⃗i⋅Δ s⃗i=B ∑
curve

Δ si=B(2π r) (Non-calculus)

According to Ampere's law then B(2πr)=0Ic. Here, cI NI= where I is the current injected
into the torrid and N is the number of turns on the torrid. Thus, solving for B we find:

B⃗=
0 NI

2πr
(−θ̂ ) .

(2) Consider the solenoid of length L with a number of turns
per unit length n. Find the magnetic field in regions near the
center of the solenoid.

Solution: Consider the (brown) path shown. On the path, if the
winding  is  tight  enough,  as  we  shall  assume here,  then  B
inside is parallel to the path. Outside the solenoid, near the
center length wise,  the magnetic  field  lines  are spread out
enough so that the field is nearly zero which is an appropriate
approximation here. On the sides, B and S are perpendicular.
Let the path have dimensions a (width) and b(length). Then,
we need to evaluate:

∑
curve

B⃗i⋅Δ s⃗i=B ∑
curve

Δ si=B(w) (Non-calculus)

The current enclosed by this  path is  then given by ( )cI nw I= where I  is  the current
injected  into  the  solenoid.  Thus,  we  can  solve  for  the  magnetic  field  to  obtain:

0 ˆB nIz=m
r

where the z direction is towards the top of the paper. It is possible to show

with a more detailed analysis that near the ends of the solenoid, due to field line
leakage  (approximately)  that  the  magnetic  field  is  1/2  of  this  value.  You  can
understand this by thinking that at any given slice, the magnetic field comes in part
from the solenoid near by and above and the other part comes from below. If one of
these components is missing, you'd expect a reduction of about 1/2 in this value. The
solenoid  is  also  very  useful  for  producing  uniform  magnetic  fields  and  is  very
important for you to 100% make sure you understand since it will play a
similar role for magnetic  fields that a parallel  plate capacitor played for
electrostatic problems.



2020 Physics 220: Worksheet13 Name _______________

(3) The law of Biot-Savart. This is going to turn out to be a different form of Ampere's
law. For non-calculus students, we can approximately write it as follows … imagine a
small element of wire of length Δ S⃗  which is containing (or, guiding if you prefer) a
current I. This small  current element gives rise to a magnet field which I will denote
by δ B⃗  and if you add up (vectorially) all these small magnetic fields, you get the
total magnetic field … or B⃗=∑ δ B⃗  where it is emphasized that this is a vector sum
which means that you need to add up the components of B.  In any event, with this
introduction, the non-calculus version of the law of Biot-Savart would appear as:

δ B⃗=(
0

4π )
IΔ S⃗⨯r̂ ip

r⃗ ip
2

where r is the vector directed from the current element to a point in space and r⃗ ip

is the unit vector directed to this point from the current element in question.  Whew!
In general, there is nothing that prevents non-calculus students from working with
this for fairly complicated shapes when given a good computer… in practice, really
the  only  time you  can  do  it  easily  without  calculus  turns  out  to  be  for  the  very
important case of calculating the magnetic field along the axis of a circular current
loop.

Here,  r⃗ ip  is the vector directed from the current element to a point in space and
r̂ip  is the unit vector directed to this point from the current element in question.

Let's  calculate  the  magnetic  field  first  at  the  center  of  a  circular
current loop of radius a carrying a current I. If the current flows as
shown by the blue angle, then B is out of the paper as shown. In this
case, each element of the wire causes a magnetic field to be in the
same  direction,  along  the  +Z  direction.  The  angle  between  each
element  and  r  is  exactly  900 so  the  calculation  reduces  to  the

following:  δ B⃗=(
0

4π )
IΔS
r2

ẑ .  Now  if  you  add  up  ΔS  over  the

circumference of a circle, what you have done is to answer the question "what is the
circumference of a circle" which is 2πr. In this case, r=a and so we have the result

that the vector magnetic field is given by B⃗=(
0

2 )
I
a

ẑ . For yucks, let's write this in

terms of the magnetic moment which we defined in the last lecture as  ⃗=I A⃗  …

since for the circle A is given by πa2, we then find the result B⃗=
⃗0

2πa3 . At best, this is

a very loose argument for the non-calculus students. It is probably best to remember
the result here. 
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(4)  Calculate  the  magnetic  field  along  the  symmetry  axis  of  a
circular current loop of radius a, carrying a current I.
Solution: The particular geometry of the system is shown to the
left. We are interested in calculating the magnetic field along the z
axis. We need to find the direction of the magnetic field at a point
along the z-axis from a small current element. You might imagine
that the high degree of symmetry is important here, which it is.
Now, refer to the second image. This shows the magnetic fields
arising at some point along z due to upper and lower currents (one
of which is directed out of the page, the other of which is directed
into the page). The off-axis directions of these magnetic fields will
cancel  when  added  up  so  that  the  only  components  of  the
magnetic fields which will survive are those components along the
z-direction which will be given by Bsin (θ )  (the angle between B
and z is 900-θ which gives sin(θ)).  We can then easily put it  all

together once we realize that  sin (θ )=
a
r

 and  r=√z2
+a2 . Thus,

we have the result:

B⃗=(0I

4π ) 2πa2

[z2
+a2

]
3/2

ẑ=(∣⃗∣0

2π ) [z2
+a2 ]

3 /2
ẑ .

Notice that for z=0, the result becomes exactly the same result as we had before.

(5) Consider two long wires, each carrying a current I. Find the magnitude of the force
of  attraction  (or  repulsion)  between  the  two  wires.  Then,  find  out  if  the  force  is
attractive or repulsive. 

Solution:
Consider  the situation  shown.  The force  on wire  2
due  to  wire  1  is  given  by  F21= I2L2B21 .  From

Ampere's law, B21=
0 I1
2πw

 so the magnitude of F21 is

given  by  ∣⃗F21∣=
0 I1I2

2πw
L2  and  the  force  per  unit

length on wire 2 is given by ∣F⃗21

L2
∣=0 I1I2

2πw
 The force

as shown is towards wire 1. By Newton's 3rd law, we
then have that the force per unit length on wire 1 is the same but in the opposite
direction.  Thus if  currents are in the same direction,  the force is attractive. If  the
currents are in opposite directions, it is now easy to show (use RHR#1 but let I2 go in
the opposite direction) that the force would be repulsive.


