
Bohr model worksheet and notes 2016
What I am going to show here is how to obtain the optical spectrum from such atoms.

Although this is largely classical, the results are astoundingly good.
The model:  assume a model of  an electron in orbit  about a massive nucleus with
charge +e.  The electron has a charge -e 

(1) Write down the force of  attraction between the nucleus and the electron from
Coulomb's law. This force will be a central force.

Coulomb’s law says: F=k
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k is Coulomb’s constant and has the value 9x109 Nm2/C2

e is the charge on the electron and has the value 1.6x10-19 C

Here I deal a bit with only uniform circular motion
(2) Write down the form of the centripetal force from Newton's law.

The electron orbiting the nucleus will respond to this central force
by Newton’s law:

F=m2

v2
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 where v is the tangential speed of the orbiting electron.
The  mass  of  the  electron  is  me=9.11x10-31 kg (Note:
mp=1.66x10-27 kg)

(3) Multiply the top and the bottom of this expression by mr2.

We can rewrite this in terms of something which is more like the
moment of inertial:
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(4) Identify L=rp=mvr and write (3) in terms of L

The angular momentum for a velocity which is perpendicular to a
radius is given by:

L=rp=me v r⇒F= L2
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 (5) Equate (1) and (4) since these are the predominate forces acting in the atom.

The force producing the uniform circular motion is the Coulomb’s force. That is why
we equate these two results. 
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(6) Solve (5) for the radius of orbit in terms of L.

We want to place the angular momentum on one side by itself because we are going
to apply quantization to this. Thus:
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(7) Apply Bohr's quantization condition where L=nh/2 =nħ (ħ=0127) to find a new
expression for r.

This was Bohr’s assumption: the angular momentum appears only in discrete units. If
one  considers  the  electron  to  be  composed  of  matter  waves  using  DeBroglie’s
hypothesis, it turns out that only these particular values of angular momentum lead to
closed orbits.
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h is known as “Planck’s Constant” and has the value of  6.626068 × 10-34 m2 kg /
s and ħ is h/2 π.
(8) Find the smallest radius and equate this to the constant a0.Also, write ke2 in terms
of a0.

The smallest radius will correspond to the case where n=1. This is, however, called a0

which is also named the Bohr radius. This can be determined now:
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You can show that the result here is  a0=0.529 x10-10 m. Note that an unusually
nice combination of constants is the fine structure constant:

α=
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(9) Write r in terms of a0 and write ke2 in terms of L, m and a0 using (6).
We can now use this to make the expression for the radius of any orbit appear much
simpler. This is given by: r=n2a0 . Furthermore, we can now also write:
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(10) Use Bohr's quantization condition to find v in terms of r and m and from (9) in
terms of a0, n and m.
Since  the  angular  momentum  is  given  by  L=mvr,  we  are  able  to  rewrite  the
expression as:
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(11) Find the total K from (1/2)mv2.
We can now find the kinetic energy of the electron in any Bohr orbital as:
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(12) Find the total U at a particular r.  Write U in terms of (h/2), m and a0 using (9).

The potential is the coulomb potential. This is thus given by:
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(13) Use your results from (11) and (12) to find the total energy of the electron in the
nth orbital radius.
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(14) Provide a value for the ionization energy E0 of the electron from (13). Then write
E in terms of n and E0.

The energy in (13) is negative since the electron is bound. In order to remove the
electron, energy must be added to make the energy zero. This amount of energy is
called the ionization energy and is equal to the energy required to move the electron
from n=1 to infinity. Thus, the ionization energy is given by:
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This value in “electron volts (eV)” is 13.6 eV. In Joules, this value is 2.2x10-18J since 
1 electron volt = 1.60217646 × 10-19 Joules

Notice that with this value, we can now write the energy levels of the Bohr atom in a
very simple way:

En=
−E∞
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(15) According to Bohr, a photon will be emitted as the result of a transition between
two energy levels.  For the case of the final state being n=2, we will have the visible
spectrum of the atom resulting (if the atom is hydrogen).  Calculate the energy of
transition between a level with n>2 to the level n=2.
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(16) Using E=hf, write (14) in terms of inverse wavelength.

The energy of a photon was hypothesized to be E=hf by Planck and later Einstein also
verified this form with the photoelectric effect. Here, f is the frequency of the photon.

Since light travels at c, we thus have the energy of the photon as  E=hc
λ
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energy of a photon given off by a transition like this would be:
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(17)  Compute  your  result  to  the  Balmer  series  and  thus  provide  a  value  for  the
Rydberg constant R.

Early on, it was observed that a very good fit to the visible spectrum from hydrogen
obeys the following relationship:
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A direct comparison with the Bohr model then gives the Rydberg constant:

R∞=
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hc
The Rydberg constant has the value: 10 973 731.6 m-1.

(18) Determine an expression for the fine structure constant α=v1/c (which is equal to
1/137). It is really remarkable that so many constants fit together to produce a simple
result here. The speed of the electron in the first Bohr orbital can be easily obtained
now:
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It is not too hard to show α=
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ħc
 and both results provide a remarkable combination

of constants into one easily remembered value (1/137).


