Instructions: You have a total of 50 minutes to complete this test. Answer each of the following questions completely, showing full details with correct SI units.
Time Start Time finish \qquad Pledged
Do not discuss any aspect of this test with anyone until I return the test. Constants: $\mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{\mathrm{A}}$
[1] A circuit consists of an inductor ($\mathrm{L}=4 \times 10^{-5} \mathrm{~h}$) and a capacitor ($\mathrm{C}=4 \times 10^{-5} \mathrm{f}$) in series.
(a) Calculate the resonance frequency (f) of this circuit.
$\mathrm{f}=$
(b) Another circuit consists of an inductor ($\mathrm{L}=4 \times 10^{-5} \mathrm{~h}$), a capacitor ($\mathrm{C}=4 \times 10^{-5} \mathrm{f}$) and a resistor ($R=5 \Omega$) in series. If the circuit is operated at $f=100 \mathrm{~Hz}$, calculate the impedance of this circuit.
$\mathbf{Z}=$
(c) A transformer consists of a primary coil with 10 turns and a secondary coil with 50 turns. If an input voltage of 10 V (RMS) AC is applied to the primary side, what is the secondary voltage?
$\mathrm{V}=$
(d) A transformer consists of a primary coil with 100 turns and a secondary coil with 50 turns. If an input voltage of 10 V (RMS) DC is applied to the primary side, what is the secondary voltage?
$V=$ \qquad
[2] An ideal solenoid has a total length h and the interior cross sectional
 area is A with a total of N windings as shown. A current I is injected into the solenoid at the bottom and exits at the top as shown. Note that in the image to the right, dashed portions are behind while solid portions are in front.

In answering the following questions, you must show complete details leading up to your answer for full credit.
(a) Circle the correct answer for the direction of the magnetic field inside the solenoid.

$$
+\hat{z} \quad-\hat{z}
$$

(b) Calculate the magnitude of the magnetic field inside the solenoid near the center. You must show details, use words and sketches. Your answer involves \mathbf{n}, I and a constant.
(c) Assuming the magnetic field is uniform throughout the solenoid, calculate the magnitude of the total magnetic flux in the solenoid when the current I is flowing. Your answer involves n, I and the interior volume of the solenoid.
(d) Calculate the inductance of the solenoid in terms of n, A and h .
(e) Calculate the total magnetostatic energy of the solenoid. Here, express your answer in terms of a constant, B, A and h. You may assume the solenoid is ideal.
(f) Provide numerical answers for (b), (c), (d) and (e) together with correct SI units for the case $I=10 A, n=2000 / m, A=0.5 \mathrm{~m}^{2}, h=1 \mathrm{~m}$.
(f:b) \qquad (f:c) \qquad (f:d) \qquad (f:e)

[3] Two long wires (each with the same length h) carry currents II and I2 in the directions shown. In the coordinate system indicated, z is out of the paper. You may assume the wires are long enough so that they may be treated as ideal. Note that a dot represents a vector coming out of the page while a cross is a vector pointing into the page.
(a) In the circles provided, show the direction that the magnetic fields point for B at 1 from 2 and B at 2 from 1. Use these symbols: \odot if the field is in the $+z$ direction and \otimes for the field directed into the $-z$ direction.
(b) Showing complete details, calculate the magnitude of the magnetic field $\mathrm{B} @ 2$ from 1 .
(c) Calculate the vector force on wire 2 due to wire 1. You must include correct unit vectors here for credit.
(d) Suppose that $I 1=3 \mathrm{~A}, \mathrm{I} 2=3 \mathrm{~A}, \mathrm{w}=1.0 \mathrm{~m}$ and $\mathrm{h}=3.0 \mathrm{~m}$. Provide numerical answers for (b) and (c) together with correct SI units and unit vectors.
\qquad
[4]Consider the following situation: a conducting rail is moving with an instantaneous position given by $\mathrm{x}=\mathrm{x}_{0}-\mathrm{pt} \quad$ (x_{0} and p are constants and the rail is moving in the -x direction). In the area enclosed by the rail system, a uniform magnetic field (B) is directed in the positive z direction: $\vec{B}=|\vec{B}| \hat{z}$. The rail system has a total resistance (at the end only) given by R and this value is assumed to be constant throughout this problem.

[a] At an instant in time, calculate the magnitude of the magnetic flux through the enclosed region of the system. You may assume the normal to the area of the enclosed region points into the $+z$ direction.
[b] Find the magnitude of the induced emf in the system at any time t.
[c] Which direction will the induced current flow: (A or B) and why (in words). Be very clear in your answer to this question.
[d] Suppose $p=2 \mathrm{~m} / \mathrm{s}, \mathrm{w}=1.0 \mathrm{~m}, \mathrm{x}_{0}=50 \mathrm{~m}, \mathrm{t}=2 \mathrm{~s}$, and $\mathrm{B}=1 \mathrm{~T}$. Provide numerical answers to [a] and [b] together with correct SI units.
[d:a] \qquad [d:b] \qquad

