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(1) Suppose, as the result of a thunderclap that the air surrounding the thunderhead
was initially at a temperature of 27 0C and a pressure of 1 Atm. and then adiabatically
increased to a pressure of 1.25 atm. What was the change in temperature of this region
of air? Assume that for air, =1.4

(2) Suppose you have 2 moles of an ideal monatomic gas in 3 dimensions at an initial
pressure of 1 atm and an initial temperature of 300K.
(a) What is the volume of the IDG?

(b) Fill in the following table.
Process Q W U

T->2T
Isovolumeric
(V=constant)

T->2T
Isobaric

(P=constant)
V->2V

Isothermal
(T=constant)

(at 300K)
T->2T

Adibatic
(Q=0)

(3) Suppose that 2 moles of an IDG go through the following process:
(1) Ti=300K, Tf=600K adiabatic process.
(2) Vi=0.05m3, Vf=0.10m3 isothermal process
(3) Ti=600K, Tf=300K, adiabatic process
(4) Vi=0.10m3, Vf=0.05m3 isothermal process
Calculate the following quantities:
(a) The total heat added to the process
(b) The total heat evolved by the process
(c) The net heat added to (or evolved from) the system.
(d) The Work done by the system along the entire process.
(e) U for this entire closed process.

(f) Define the engine’s efficiency by: ε=
W

Qinput

.

Find out how efficient this engine is.

(4) Show for the closed process involving 2 isotherms and 2 adiabatic processes as in

problem (3) that the efficiency is given by: ε=1−
Tcold

THot

(5) What is the efficiency of a Carnot cycle which is operating between the temperature
extremes of 00C and -200 0C.
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Thermodynamic processes with the ideal gas (this applies only to the IDG!)
One of the most important things to keep in mind throughout this discussion is the first
law of thermodynamics:

ΔU=Q−W
In words, this means that the change in internal energy is equal to the net heat added
to the system minus the work done by the system. 
Note again: this is the physics sign convention for work
+W means work was done  by the system:  if  a gas expands (and moves a piston
against  a  constant  pressure)  the  system does  work.  This  work  is  positive  in  our
convention.
If at a constant pressure, then W=PΔ V=|PΔ V|

 
 -W means work was done on the system: if a gas compresses (and moves a piston
against  a  pressure)  work  is  done  on  the  system.  This  work  is  negative  in  our
convention.
If at a constant pressure, then W=−|PΔV|

 
Let’s investigate some particular processes now.
We  have  already  defined  the  work  done  by  the  system  (so  long  as  it  is  a
thermodynamic system involving the variables P, V and T) as:

W=PΔ V .
If the pressure and volume change, the calculation gets more complicated:

Non-calculus: W=∑
i

PiΔ Vi

Calculus:  W=∫
Vi

Vf

PdV

Heat can be added to the ideal gas in a number of ways. We’ll be considering these.
(1) Suppose that heat is added so that V=0 (isovolumeric). Then:

W=0 and  ΔU=Q

We need to know how the heat is added. This is given by:
Q=ncv (Δ T )

where cv is called the “molar specific heat at a constant volume.” Thus, it’s easy to
calculate the change in internal energy here, provided you know cv (which, for an ideal
gas, we will calculate later):

ΔU=ncv ( ΔT )

To emphasize: no work was done by or on the system. All heat added or removed from
the system directly changed the internal energy of the system only.

(2) Suppose that heat is added so that P=0 (isobaric). Then:

ΔU=Q−W⇒ΔU=ncp (Δ T )−P (Δ V )
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where cp is called the “molar specific heat at a constant pressure.” It is pretty
easy to see that

and we can even determine by how much larger it is for the ideal gas (which we are
getting ready to calculate). We can thus see that if the gas goes through an isobaric
process, then

ΔU=Q−W⇒ΔU=ncp (Δ T )−P (Δ V )

Now, you will find out from the kinetic theory of an ideal gas that the internal
energy of an ideal gas is a function of temperature only (so long as n remains
constant, as it does in our class).
Consider  the  comparison  of  an  isovolumeric  process  between  the  same  two
temperatures as an isobaric process. Both processes must produce the same U since
the temperature change for the two processes is the same. Thus:

[ΔUisovolumeric=ΔUisobaric ]⇒ncv (Δ T )−P (ΔV )

We can write V (remember:  for the RHS of the equation, P is constant) in terms of the
other thermodynamic variables:

V=nR T
P

⇒Δ V=nR Δ T
P

Thus we can further simplify the comparison to read:
[ΔUisovolumeric=ΔUisobaric ]⇒ncv (Δ T )−nR (Δ T )

It is now a very simple step in algebra to show:

For an Ideal Monatomic Ideal Gas
cv=cp−R⇒cp=cv+R

I promised you it needed to be larger and now you see that it is. 
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(3)  We can have another process with an ideal  gas,  namely an isothermal process
where T=0. Note: just because you have an isothermal process, this does not mean
that Q=0.  Hmmm… temperature does not always have to change if you add Q to a
system.

Ok, enough with the foreshadowing … if you have an isothermal process, then U=0
(why? read the bold italic section above).

For such a process, you can’t define an appropriate heat capacity because for you to
use a heat capacity, temperature has to change. You might wrongly think, then, that
Q=0 for this process. It is not … let’s see what it is:

Since T=0, we must have U=0. This then means that the first law of thermodynamics
looks like this:

ΔU=Q−W=0⇒Q=W

Ok, so the way you find Q is by finding out how much work was done. Let’s do that
(again):
The work done is given by:

W=P (Δ V )

Here, however, P is not constant so you would need to add up small increments of
work. We can use an approximation I introduced last time. First, write P in a different
form:

P=nR T
V

T is constant here. We use this to find the work:

W=nR T Δ V
V

, or more precisely,  W=nRT∑
i

ΔV i

V i

.

From the approximation I showed in the last sheet, you know to write this as a log:

W=nR T ln(
V f

V i
)

Calculus students have a much easier time:

W=nRT∫
W i

Vf

dV
V

=nRTln(
V f

Vi
)

Ok, we can now calculate the heat added in an isothermal process:

Q=nRT ln(
V f

Vi
)
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(4) An adiabatic process: we can also take the ideal gas through an adiabatic process in
which Q=0, and you now know that this is not the same as an isothermal process. Now,
this is going to be a bit more difficult than the other processes but I’ll provide you with
the details so you won’t need imagination to know that this is right.  We’ll  get as a
consequence the derivation of the “adiabatic equation of state” for an ideal gas. This is
extremely important if you want to understand how heat engines work efficiently.

Derivation of the IDG adiabatic equation of state (non-calculus)
Included only for reference. Skip to the calculus part.

For an adiabatic process, Q=0. This means that we have from the first law:
[ΔU=Q−W ]⇒ΔU=−W

Ok,  so  far  so  good.  If  we  calculate  W,  then  we’ve  calculated  U for  this  process.
However, that turns out to be easier to say than to do but let’s do it anyway. We can’t
directly calculate W as we did before because P,V and T are all changing here. Never-
the-less, we do have to remember that no matter what the process is, if it operates
between two temperature extremes,  U is given by:

ΔU=ncV (Δ T )

Thus, we can write:

ncV ( ΔT )=−P ( ΔV )=−nR T( ΔV
V )⇒ncV(Δ T

T )=−nR(Δ V
V )

Now, we know that R is connected to cp  since R=cP−cV . So we could write:

cV(Δ T
T )=−(cP−cV )(Δ V

V )=(CV−CP ) (ΔV
V )

Let’s divide by cv:

(Δ T
T )=(1−

CP

CV
)( ΔV

V )

Now, apply the useful approximation to both sides of this equation:

ln(
T f

Ti
)= (1−γ )ln(

V f

V i
)

 Here, 

γ≡
cP

cV

Now you need a useful but often forgotten property of logarithms: 
aln(b)=ln (ba )

This means that we can write our relation in a “simpler” form as:

ln(
T f

Ti
)=ln([ V f

Vi ]
1−γ

)
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Next, take both sides of this to the power e and use the identity function:
eln(b)

=b

This gives us:
T f

T i

=[
Vf

V i
]
1−γ

Lose the “f” subscript on T and V since we want to apply this at any temperature T.
Next, a simple step in algebra puts is in a more familiar form:

T
T i

=[ V
V i ]

1−γ

⇒T1T i
−i
=V1−γ V i

(1−γ)

⇒T1Vγ−1
=T i Vi

γ−1
⇒T Vγ−1

=T i Vi
γ−1

Since Ti and Vi are constants, we thus have the adiabatic  process (it is really not an
equation of state although it is often called that):

TV γ−1
=Constant

We can also write this in terms of the pressure (since V=nRT/P) as:
PV
nR

( V )
γ−1

=PVγ( 1
nR )⇒PVγ

=Konstant

where this constant is not the same as in the previous expression. Also this constant
is a very unusual constant in physics: it has fractional units and the powers of these
units  may  even  change  as  the  nature  of  the  gas  changes.  I  have  spelled  them
differently to be clear about this.
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Derivation of the IDG adiabatic equation of state (calculus)
For an adiabatic process, Q=0. This means that we have from the first law:

[ΔU=Q−W ]⇒ΔU=−W

Ok,  so  far  so  good.  If  we  calculate  W,  then  we’ve  calculated  U for  this  process.
However, that turns out to be easier to say than to do but let’s do it anyway. We can’t
directly calculate W as we did before because P,V and T are all changing here. Never-
the-less, we do have to remember that no matter what the process is, if it operates
between two temperature extremes, dU is given by:

dU=nCv(dT)

Thus, we can write:

ncV(dT)=−P(dV)=−nR T (dV
V )⇒cV(dT

T )=−nR(dV
V )

Now, we know that R is connected to cp so we could write:

cV(dT
T )=−(cP−cV )(dV

V )=(1−γ)(dV
V )

Let’s divide by cv:

dT
T

=(1−
cP

cV
)dV

V
=(1−γ)

dV
V

;γ≡
cP

cV

We can integrate both sides of this differential equation:

∫
Ti

T f

dT
T

=(1−γ )∫
V i

Vf

dV
V

⇒ ln(
T f

Ti
)= (1−γ )ln(

V f

V i
)

Here, 

γ≡
cP

cV

Now you need a useful but often forgotten property of logarithms: 
aln(b)=ln (ba )

This means that we can write our relation in a “simpler” form as:

ln(
T f

Ti
)=ln([ V f

Vi ]
1−γ

)

Next, take both sides of this to the power e and use the identity function:
eln(b)

=b

This gives us:
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T f

T i

=[
Vf

V i
]
1−γ

Lose the “f” subscript on T and V since we want to apply this at any temperature T.
Next, a simple step in algebra puts is in a more familiar form:

T
T i

=[ V
V i ]

1−γ

⇒T1T i
−i
=V1−γ V i

(1−γ)

⇒T1Vγ−1
=T i Vi

γ−1
⇒T Vγ−1

=T i Vi
γ−1

Since Ti and Vi are constants, we thus have the adiabatic  process (it is really not an
equation of state although it is often called that):

TV γ−1
=Constant

We can also write this in terms of the pressure (since V=nRT/P) as:
PV
nR

( V )
γ−1

=PVγ( 1
nR )⇒PVγ

=Konstant

where this constant is not the same as in the previous expression. Also this constant
is a very unusual constant in physics: it has fractional units and the powers of these
units  may  even  change  as  the  nature  of  the  gas  changes.  I  have  spelled  them
differently to be clear about this.

 Let’s recap all that you’re learned now. In a later lecture I will show you that cv obeys:

Model cv

3-D monatomic gas 3
2

R

2-D monatomic gas 2
2

R

1-D monatomic gas 1
2

R

3-D diatomic solid-gas (lower temperatures) 3
2

R

3-D diatomic solid-gas (moderate temperatures) 3
2

R+
2
2

R=
5
2

R

3-D diatomic solid-gas (higher temperatures) 3
2

R+
2
2

R+
2
2

R=
7
2

R

½ R is added to cv for each degree of freedom which is realized in a system. 
To understand where these results  come from, we’ll  need to delve into the kinetic
theory of an ideal gas. Do, however, remember

cP=cV+R
and

γ≡
cP

cV
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Process Eqtn of state Q W U=Q-W
V=constant
Isovolumeric

PV=nRT
P∝ T
P
T

=constant

Q=ncVΔ T 0 ΔU=ncV Δ T

P=constant
Isobaric

PV=nRT
V ∝T
V
T

=constant

Q=ncpΔ T W=PΔ V ΔU=ncV Δ T

T=constant
Isothermal

PV=nRT

P∝ 1
V

Q=W
W=nR T ln(

V f

V i
)

ΔU=0
>>Why?<<

Q=0
Adiabatic

PV=nRT
PVγ

=Konstant
TV γ−1

=Constant

Q=0 W=−ΔU ΔU=ncV Δ T
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(1) Suppose, as the result of a thunderclap that the air surrounding the thunderhead
was initially at a temperature of 27 0C and a pressure of 1 Atm. and then adiabatically
increased to a pressure of 1.25 atm. What was the change in temperature of this region
of air? Assume that for air, =1.4

Solution:
We’ll need the adiabatic equation of state here, but in a slightly different form:

PVγ
=P(nR T

P )
γ

=(nR)
γP( T

P )
γ

⇒P1−γ Tγ
=constant

For the adiabatic process, we have:

P1
1−γ T1

γ
=P2

1−γ T2
γ
⇒T2

γ
=T1

γ(
P1

P2
)
1−γ

We know what the ratio of pressures is:
P1

P2

=
1

1.25
=0.8

Now if you use T=27 here, you’ve fallen into my temperature trap!
You must convert this temperature to K: T=300K
Thus,

T2
γ
=T1

γ(
P1

P2
)
1−γ

=(300)
1.4

(0.8)
−0.4

=(2937.4)(1.0934)=3211.6

So,

T2=(3211.6 )
1
γ=(3211.6)

1
1.4=319.7K

Thus,
Δ T=319.7K−300K=19.7K

What if the thunderbolt adiabatically doubled the volume?

Here  is  an  important  note:  The  adiabatic  process  equation  and  also  the  ideal  gas
equations  of  state  must  be  simultaneously obeyed for  an  adiabatic  process.  The
adiabatic process simply refers to a path.
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(2) Suppose you have 2 moles of an ideal monatomic gas in 3 dimensions at an initial
pressure of 1 atm and an initial temperature of 300K.
(a) What is the volume of the IDG?

v=
nRT
P

=
2(8.314)300

1x 105
=0.05m3

Fill in the following table.
Here, cv is 3/2 R because of the description.

Process Q W U
T->2T

Isovolumeric
(V=constant)

Q=ncVΔ T

Q=2(3
2 )R(600−300)

Q=7483 J

W=0
ΔU=ncV Δ T
ΔU=7383 J

T->2T

Isobaric
(P=constant)

Q=ncP Δ T
Q=n(cV+R)Δ T

Q=2(3
2

R+R)(600−300)

Q=2(5
2

R)(300)

Q = 12471 J

W=PΔ V

Δ V=
nR
P

Δ T

PΔV=nR ΔT
W=nR ΔT
W=2 (R)(600−300)

W=4988.4J

(1)
ΔU=ncV Δ T
ΔU=7483 J

(2)
ΔU=Q−W
ΔU=7483 J

V->2V
Isothermal
(T=constant)
(at 300K)

Q=W

Q=3458J

W=nR T ln(
V f

V i
)

W=2R (300)ln(
2V i

V i
)

ΔU=0
>>Why?<<

T->2T
Adiabatic

(Q=0)

Q=0 W=−ΔU

W=-7483 J

ΔU=ncv ΔT
ΔU=3R(600−300)

ΔU=7483 J
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(3) Suppose that 2 moles of an IDG go through the following process:
(1) Ti=300K, Tf=600K adiabatic process.
(2) Vi=0.05m3, Vf=0.10m3 isothermal process
(3) Ti=600K, Tf=300K, adiabatic process
(4) Vi=0.10m3, Vf=0.05m3 isothermal process

Calculate the following quantities:
(a) The total heat added to the process
(b) The total heat evolved by the process
(c) The net heat added to (or evolved from) the system.
(d) The work done by the system along the entire process.
(e) U for this entire closed process.
(f) Define the engine’s efficiency by:

ε≡
W

Qinput

Find out how efficient this engine is.
(a) Heat is added to the system or removed from the system only along the isothermal
portions of the process because along the adiabatic portions, no heat enters or
leaves the system. Thus, for process (2 and 4) we have (as in the second problem):

W(2)=nRT ln(
V f

V i
)=2(8.314)(600)ln( 0.1

0.05 )=6915 J

W(4)=nR T ln(
V f

Vi
)=2 (8.314)(300) ln(0.05

0.1 )=−3457.7 J

Thus 
Q(1)=0
Q(2)=6915.4J (answer to (a))
Q(3)=0
Q(4)=-3457.7J (answer to (b))
The total heat added to the system is:

Q=Q(2)+Q(3)=6915.4J-3457.7J=3457.7J (answer to (c))

We can now calculate the total work done:
W=6915.4J-3457.7J=+3457.7J

(this is the answer to (d))
We can now calculate U for this process:

ΔU=Q−W=3457.7−3457.7=0 J

This had to be the case (why?)
The efficiency is now easily given by:

ε=
3457.2
6915

=0.50⇒50% efficiency
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(4) Show for the closed process involving 2 isotherms and 2 adiabatic processes as in
problem (3) that the efficiency is given by:

ε=1−
Tcold

Thot

Since for any closed process involving the IDG, U must equal 0 (why?)
We have from the 1st law:

ΔU=Q−W⇒Qinput−Qrejected=W

This is usually written in terms of QH and Qc (h-hot, c-cold) because it is observed that
heat flows from hotter  regions towards colder  regions.  Thus,  the heat  input  to the
system must have come from a hot reservoir and was rejected to a colder reservoir.
If the first law is valid, then we can write the efficiency defined in problem 3 as:

ε=
W

Qinput

=
QH−QC

QH

=1−
Qc

QH

We can check real easily that this is true for problem (3):

εproblem2=1−
3457.7
6915.4

=1−0.5=0.5⇒50% efficient

(not all efficiencies come out to be 50% so don’t fall into that trap).
In more general terms, for a cycle such as this, we have:

QC

QH

=

nR TC ln(
V2, f

V2.i
)

nR TH ln(
V1,f

V1.i
)

From the adiabatic process, we have:

TH V2,i
γ−1

=Tc V2,i
γ−1

⇒V2,f=(
TH

TC
)

1
γ−1 V1,i

and

TC V2,f
γ−1

=THV2,f
γ−1

⇒V2,i=(
TH

TC
)

1
γ−1 V1,f

We can easily find the ratio of these:

From the adiabatic process, we have:

  and   

So:
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ln(
V2, f

V2,i
)=ln [ ((

TH

TC
))

1
γ−1 V1,i

((
TH

TC
))

1
γ−1 V1,f ]=ln(

V1,i

V1,f
)

⇒
QC

QH

=
TC

TH

ln(
V1,i

V1,f
)

ln(
V1,i

V1,f
)
=

TC

TH

Thus, the efficiency is given by:

εC=1−
TC

TH

Again, you can check this for problem (2) to easily get 50% efficiency. This cycle which
I have described is the Carnot cycle and it is the most efficient cycle which can be
obtained. This will be shown later. Important to note, however, is that this last form of
the efficiency ONLY is valid for a Carnot cycle! That’s why that  “C” appears beside
the  symbol.
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(5) What is the efficiency of a Carnot cycle which is operating between the temperature
extremes of 00C and -200 0C.

Solution:

We showed in problem (4) that for a Carnot cycle,

εC=1−
TC

TH

It  is  possible  to  show  by  considering  to  exhaustion  all  possible  combinations  of
isotherms-adiabats that all Carnot cycles have this same efficiency.  This, in fact, is the
second law of thermodynamics.

What we have not yet shown is that this is the most efficient cycle possible. That needs
to wait till we talk about Entropy. I prefer to show this using entropy considerations. 

The solution to our present problem:

εC=1−
TC

TH

=1−
−200

0
=∞

Oops! if you answer this type of question like this, then you’ve fallen into my trap and
missed the problem. I usually don’t even think about giving partial credit for this type
of error … that’s why you want to make sure you don’t make this mistake.

The problem is this: you must work with your temperatures in K only!

The real solution:

εC=1−
TC

TH

=1−
73.15
273.15

=0.732⇒73.2% efficient


