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(1) Suppose, as the result of a thunderclap that the air surrounding the thunderhead
was initially at a temperature of 27 °C and a pressure of 1 Atm. and then adiabatically
increased to a pressure of 1.25 atm. What was the change in temperature of this region
of air? Assume that for air, y=1.4

(2) Suppose you have 2 moles of an ideal monatomic gas in 3 dimensions at an initial
pressure of 1 atm and an initial temperature of 300K.
(a) What is the volume of the IDG?

(b) Fill in the following table.

Process Q w AU
T->2T
Isovolumeric
(V=constant)
T->2T
Isobaric
(P=constant)
V->2V
Isothermal
(T=constant)
(at 300K)
T->2T
Adibatic
(Q=0)

(3) Suppose that 2 moles of an IDG go through the following process:
(1) Ti=300K, Tr=600K adiabatic process.

(2) Vi=0.05m3, V;=0.10m?3 isothermal process

(3) Ti=600K, Tr=300K, adiabatic process

(4) Vi=0.10m3, V¢=0.05m? isothermal process

Calculate the following quantities:

(a) The total heat added to the process

(b) The total heat evolved by the process

(c) The net heat added to (or evolved from) the system.
(d) The Work done by the system along the entire process.
(e) AU for this entire closed process.

W

Qinput

(f) Define the engine’s efficiency by: &=

Find out how efficient this engine is.

(4) Show for the closed process involving 2 isotherms and 2 adiabatic processes as in

=
problem (3) that the efficiency is given by: 8:1_1_;0'0'
Hot

(5) What is the efficiency of a Carnot cycle which is operating between the temperature
extremes of 0°C and -200 °C.
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Thermodynamic processes with the ideal gas (this applies only to the IDG!)
One of the most important things to keep in mind throughout this discussion is the first
law of thermodynamics:

AU=Q-W

In words, this means that the change in internal energy is equal to the net heat added
to the system minus the work done by the system.
Note again: this is the physics sigh convention for work
+W means work was done by the system: if a gas expands (and moves a piston
against a constant pressure) the system does work. This work is positive in our
convention.
If at a constant pressure, then W=PAV=|PAV|

-W means work was done on the system: if a gas compresses (and moves a piston
against a pressure) work is done on the system. This work is negative in our
convention.

If at a constant pressure, then W=—|PAV/|

Let’'s investigate some particular processes now.
We have already defined the work done by the system (so long as it is a
thermodynamic system involving the variables P, V and T) as:
W=PAV .
If the pressure and volume change, the calculation gets more complicated:
Non-calculus: W=) P,AV,
1

v
Calculus: W= Pdv
v

Heat can be added to the ideal gas in a number of ways. We'll be considering these.
(1) Suppose that heat is added so that AV=0 (isovolumeric). Then:
W=0 and AU=Q

We need to know how the heat is added. This is given by:
Q=nc,[AT]

where ¢, is called the “molar specific heat at a constant volume.” Thus, it’s easy to
calculate the change in internal energy here, provided you know c, (which, for an ideal

gas, we will calculate later):
AU=nc AT

To emphasize: no work was done by or on the system. All heat added or removed from
the system directly changed the internal energy of the system only.

(2) Suppose that heat is added so that AP=0 (isobaric). Then:

AU=Q-W=AU=nc, [AT|-P[AV
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where ¢, is called the “molar specific heat at a constant pressure.” It is pretty
easy to see that
c, >¢,
and we can even determine by how much larger it is for the ideal gas (which we are
getting ready to calculate). We can thus see that if the gas goes through an isobaric
process, then
AU=Q-W=AU=nc,[AT|-P(AV|

Now, you will find out from the kinetic theory of an ideal gas that the internal
energy of an ideal gas is a function of temperature only (so long as n remains
constant, as it does in our class).

Consider the comparison of an isovolumeric process between the same two
temperatures as an isobaric process. Both processes must produce the same AU since
the temperature change for the two processes is the same. Thus:

AU =nc,[(AT|-P(AV]

isovolumeric —

AU

isobaric}

We can write AV (remember: for the RHS of the equation, P is constant) in terms of the
other thermodynamic variables:
T AT

V=nNnR—=>AV=nR—
P P

Thus we can further simplify the comparison to read:
[AUisovolumeric:AUisobaric}ﬁnCv(ATJ_nR(AT)
It is now a very simple step in algebra to show:
For an Ideal Monatomic Ideal Gas

¢,=C,—R=¢c,=Cc,+R

| promised you it needed to be larger and now you see that it is.
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(3) We can have another process with an ideal gas, namely an isothermal process
where AT=0. Note: just because you have an isothermal process, this does not mean
that Q=0. Hmmm... temperature does not always have to change if you add Q to a
system.

Ok, enough with the foreshadowing ... if you have an isothermal process, then AU=0
(why? read the bold italic section above).

For such a process, you can’t define an appropriate heat capacity because for you to
use a heat capacity, temperature has to change. You might wrongly think, then, that
Q=0 for this process. It is not ... let’s see what it is:

Since AT=0, we must have AU=0. This then means that the first law of thermodynamics
looks like this:
AU=Q-W=0=>Q=W

Ok, so the way you find Q is by finding out how much work was done. Let's do that
(again):
The work done is given by:

W=P[AV|

Here, however, P is not constant so you would need to add up small increments of
work. We can use an approximation | introduced last time. First, write P in a different
form:

T

P=n Rv
T is constant here. We use this to find the work:

. AV,
W=n RT% , or more precisely, W=nRT ), T‘ :
From the approximation | showed in the last sheet, you know to write this as a log:

Vi

W=nRTIn
V

Calculus students have a much easier time:

Vi

Vi
w=nRT [ &Y =nRTIn
w V Y

Ok, we can now calculate the heat added in an isothermal process:

v,

=nRTIn
Q V
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(4) An adiabatic process: we can also take the ideal gas through an adiabatic process in
which Q=0, and you now know that this is not the same as an isothermal process. Now,
this is going to be a bit more difficult than the other processes but I'll provide you with
the details so you won’t need imagination to know that this is right. We’ll get as a
consequence the derivation of the “adiabatic equation of state” for an ideal gas. This is
extremely important if you want to understand how heat engines work efficiently.

Derivation of the IDG adiabatic equation of state (non-calculus)
Included only for reference. Skip to the calculus part.
For an adiabatic process, Q=0. This means that we have from the first law:
AU=Q-W|=AU=—W

Ok, so far so good. If we calculate W, then we've calculated AU for this process.
However, that turns out to be easier to say than to do but let’s do it anyway. We can’t
directly calculate W as we did before because P,V and T are all changing here. Never-
the-less, we do have to remember that no matter what the process is, if it operates
between two temperature extremes, AU is given by:

AU=nc,(AT]

Thus, we can write:

nc,(AT]=—P(aV)=—nRT|AY

AT

T

AV

Vv

=nc¢, =-nR

Now, we know that R is connected to ¢, since R=c,—c, . So we could write:

AT AV AV
Cy T :_(CP_CV) T):(CV_CP)(T
Let’s divide by c.:
AT|_[1_Ce)lAaV
T C,//\ V
Now, apply the useful approximation to both sides of this equation:
In T =(1-vy|In Yy
Ti Vi
Here,
_Ce
Y=c

\Y

Now you need a useful but often forgotten property of logarithms:

aln(b)=In(p?|
This means that we can write our relation in a “simpler” form as:
T v [
In| <L |=In||<!
T, V.
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Next, take both sides of this to the power e and use the identity function:

eln(b):b
This gives us:
T, [V, ]
T, |V,

Lose the “f” subscript on T and V since we want to apply this at any temperature T.
Next, a simple step in algebra puts is in a more familiar form:

T Vv Ty 1o-i_v71-yy\/(1-vy)

?i— VI =>T Ti =V Vi
STV =T,V =TV =TV}

Since T; and V; are constants, we thus have the adiabatic process (it is really not an

equation of state although it is often called that):

TVY '=Constant

We can also write this in terms of the pressure (since V=nRT/P) as:

%(V)’H:PVV %):PV’/:KOHStant

where this constant is not the same as in the previous expression. Also this constant
is a very unusual constant in physics: it has fractional units and the powers of these
units may even change as the nature of the gas changes. | have spelled them
differently to be clear about this.
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Derivation of the IDG adiabatic equation of state (calculus)
For an adiabatic process, Q=0. This means that we have from the first law:
AU=Q-W|=AU=—W

Ok, so far so good. If we calculate W, then we’'ve calculated AU for this process.
However, that turns out to be easier to say than to do but let's do it anyway. We can’t
directly calculate W as we did before because P,V and T are all changing here. Never-
the-less, we do have to remember that no matter what the process is, if it operates
between two temperature extremes, dU is given by:

du=nC,(dT)
Thus, we can write:
dv dT dv
ncy(dT)=—P(dV)=—nRT|S |=c,[ T |]=—nR 7)

Now, we know that R is connected to ¢, so we could write:

dT dv dv
Cy ?):_(CP_CV)(V =(1-y) 7)
Let’s divide by c.:
daT Cp |dV dVv Cp
— =12 =(1-y)—y=—"
T N AR VAR Y
We can integrate both sides of this differential equation:
dT fav_ [T v
| ==1-y|[ = =In|Z|=[1-y|In|L
T T V, V Ti Vi
Here,
_Ce
Y=

Now you need a useful but often forgotten property of logarithms:

aln(b)=In(p?|
This means that we can write our relation in a “simpler” form as:
T v [
In|= |=In||—
T, vi]

Next, take both sides of this to the power e and use the identity function:
In(b)__
e""'=b

This gives us:
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1-y

T

V.

Tf_[vf

Lose the “f” subscript on T and V since we want to apply this at any temperature T.
Next, a simple step in algebra puts is in a more familiar form:

1-—
% % V:TlT;‘:vlfyv?*W

STV =TV =TV =T,V !
Since T; and V; are constants, we thus have the adiabatic process (it is really not an
equation of state although it is often called that):
TV '=Constant

We can also write this in terms of the pressure (since V=nRT/P) as:

PVivp-i=pvy| L |- pvi=Konstant

NnR n_

where this constant is not the same as in the previous expression. Also this constant
is a very unusual constant in physics: it has fractional units and the powers of these
units may even change as the nature of the gas changes. | have spelled them
differently to be clear about this.

Let’s recap all that you're learned now. In a later lecture | will show you that ¢, obeys:

Model

o]

3-D monatomic gas VQR

2-D monatomic gas ER

1-D monatomic gas iR

3-D diatomic solid-gas (lower temperatures) ER

3-D diatomic solid-gas (moderate temperatures) §R+3R=§R

3-D diatomic solid-gas (higher temperatures) ;‘ gRJ’%ZR:%R

2 R is added to c, for each degree of freedom which is realized in a system.
To understand where these results come from, we’ll need to delve into the kinetic
theory of an ideal gas. Do, however, remember

Cp=C,+R
and
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Process Eqtn of state Q W AU=Q-W
V=constant | PV=nRT Q=nc, AT 0 AU=nc, AT
Isovolumeric PxT

P

—=constant

T
P=constant | PV=nRT Q:ncpAT W=PAV AU=nc AT
Isobaric VT

!:constant

T
T=constant | PV=nRT Q=W V; AU=0
Isothermal poc L W=nRTIn v | | >>Why?<<

X = i
\

Q=0 PV=nRT Q=0 W=-AU AU=nc,AT
Adiabatic PVY=Konstant

TV '=Constant
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(1) Suppose, as the result of a thunderclap that the air surrounding the thunderhead
was initially at a temperature of 27 °C and a pressure of 1 Atm. and then adiabatically
increased to a pressure of 1.25 atm. What was the change in temperature of this region
of air? Assume that for air, y=1.4

Solution:
We’'ll need the adiabatic equation of state here, but in a slightly different form:

T Y T Y 1
PVY=P nRF =(nR)*P 5 =P Y T’=constant

For the adiabatic process, we have:

P, |
P}YT{:P;YngT;:T{(P—l)
2

We know what the ratio of pressures is:

P, 1 _
P 1.25‘0'8

2

Now if you use T=27 here, you’ve fallen into my temperature trap!
You must convert this temperature to K: T=300K

Thus,
P, |
T;’:T}(P—l) =(300)"*(0.8)°*=(2937.4)(1.0934)=3211.6
2
So,
1 1
T,=(3211.6/"=(3211.6)"*=319.7K

Thus,

AT=319.7K-300K=19.7K
What if the thunderbolt adiabatically doubled the volume?
Here is an important note: The adiabatic process equation and also the ideal gas

equations of state must be simultaneously obeyed for an adiabatic process. The
adiabatic process simply refers to a path.
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(2) Suppose you have 2 moles of an ideal monatomic gas in 3 dimensions at an initial

pressure of 1 atm and an initial temperature of 300K.
(@) What is the volume of the IDG?

v nRT _ 2(8.314)300 —0.05m?
P 1x10°
Fill in the following table.
Here, ¢, is 3/2 R because of the description.
Process Q W AU
T->2T Q=nc,AT AU=nc, AT
3 W=0 AU=7383]
Isovolumeric | Q=2 E)R(600—300)
(V=constant)
Q=7483]
T->2T Q=nc,AT W=PAV (1)
Q=n(c +R)AT av="R, T AU=nc,AT
Isobaric 3 P AU=7483]
(P=constant) Q=2(§R+R (600-300) | pAV=nRAT
5 W=nRAT (2)
Q:Z(—R (300) W=2(R)(600-300) AU=Q-W
2 W=4988.4) AU=7483]
Q =12471|
V->2V Q=W V. AU=0
Isothermal W=nRTIn| " >>Why?<<
(T=constant) | Q=3458] ! v
(at 300K) W=2R(300)In T)
W =3458]
T->2T Q=0 W=-AU AU=nc AT
Adiabatic AU=3R(600-300)
W=-7483 | AU=7483)

(Q=0)
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(3) Suppose that 2 moles of an IDG go through the following process:
(1) Ti=300K, Tr=600K adiabatic process.

(2) Vi=0.05m3, V;=0.10m?3 isothermal process

(3) Ti=600K, Tr=300K, adiabatic process

(4) Vi=0.10m3, V¢=0.05m? isothermal process

Calculate the following quantities:
(a) The total heat added to the process
(b) The total heat evolved by the process
(c) The net heat added to (or evolved from) the system.
(d) The work done by the system along the entire process.
(e) AU for this entire closed process.
(f) Define the engine’s efficiency by:
W

Qinput

€

Find out how efficient this engine is.

(a) Heat is added to the system or removed from the system only along the isothermal
portions of the process because along the adiabatic portions, no heat enters or
leaves the system. Thus, for process (2 and 4) we have (as in the second problem):

V¢ 0.1
\Y
W, =nRTin| |=2(8.314)(300)In %):—3457.7]
Thus
Q(1)=0
Q(2)=6915.4) (answer to (a))
Q(3)=0

Q(4)=-3457.7]) (answer to (b))
The total heat added to the system is:
Q=Q(2)+Q(3)=6915.4)-3457.7)=3457.7) (answer to (c))

We can now calculate the total work done:
W=6915.4)-3457.7)=+3457.7]

(this is the answer to (d))

We can now calculate AU for this process:
AU=Q-W=3457.7-3457.7=0])

This had to be the case (why?)
The efficiency is now easily given by:
_3457.2

*=76915

=0.50=50% efficiency
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(4) Show for the closed process involving 2 isotherms and 2 adiabatic processes as in
problem (3) that the efficiency is given by:
T

e= 1 _ Tcold
hot

Since for any closed process involving the IDG, AU must equal 0 (why?)
We have from the 1 law:

A U:Q_W ﬁQinput_Qrejected:W

This is usually written in terms of Q4 and Q. (h-hot, c-cold) because it is observed that
heat flows from hotter regions towards colder regions. Thus, the heat input to the
system must have come from a hot reservoir and was rejected to a colder reservoir.
If the first law is valid, then we can write the efficiency defined in problem 3 as:
= W :Q”_chl—&
Qinput QH QH

We can check real easily that this is true for problem (3):

ey =137 4 9 5-0.5-50% efficient
° 6915.4

€

(not all efficiencies come out to be 50% so don’t fall into that trap).
In more general terms, for a cycle such as this, we have:

V
nRT.In| 2!

2.i

Cc_

Q.

Vv
NRT,In| 2=

1.i
From the adiabatic process, we have:

T. -2
Tva,_il:chg,_il:’\/z,f: T_H)y_l Vl,i
C

and
T |-
chz,_flzTHV%,,_fl:Vz,i: T_)y_l Vi
C

We can easily find the ratio of these:

Vo
Q. _ NRT. In v2

Qq
H NnRTy, In| v_
From the adiabatic process, we have:

THfo_f1 :chz%il = Vo :(%)ﬁvl,l and TV, =Ty Vi t Vi ( C)il Vi
So:
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=
T 1,i
Vol c IV
In|—=|=In - =In
2,i (TH -1 Vl,f
- Vl,f
TC
\Y
In|—2-
Qc_Tc \Var)_Tec
Qi Ty Vl,i) H
In
Vi
Thus, the efficiency is given by:
TC
8C:1—T—

H

Again, you can check this for problem (2) to easily get 50% efficiency. This cycle which
| have described is the Carnot cycle and it is the most efficient cycle which can be
obtained. This will be shown later. Important to note, however, is that this last form of
the efficiency ONLY is valid for a Carnot cycle! That's why that “C” appears beside
the ¢ symbol.
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(5) What is the efficiency of a Carnot cycle which is operating between the temperature
extremes of 0°C and -200 °C.

Solution:

We showed in problem (4) that for a Carnot cycle,
TC

EC:].—T—
H

It is possible to show by considering to exhaustion all possible combinations of
isotherms-adiabats that all Carnot cycles have this same efficiency. This, in fact, is the
second law of thermodynamics.

What we have not yet shown is that this is the most efficient cycle possible. That needs
to wait till we talk about Entropy. | prefer to show this using entropy considerations.

The solution to our present problem:
T —200 _

gc=l-—"=1-—"""=ow

T 0

H

Oops! if you answer this type of question like this, then you’ve fallen into my trap and
missed the problem. | usually don’t even think about giving partial credit for this type
of error ... that’s why you want to make sure you don’t make this mistake.

The problem is this: you must work with your temperatures in K only!

The real solution:

. Te . 73.15
te=l-7-=1-57375

H

=0.732=73.2% efficient



