
r20 Physics 240: worksheet 21 Name: ________________

(1) Cowboy Ryan decides it’s time to take a break from the dairy bar and takes a road
trip to Cape Hatteras for a visit to the lighthouse (http://www.nps.gov/caha/index.htm).
While there, he looks up and notices a very large spider dangling a mere 10 cm above
his  eye.  He  also  notices  that  the  massless  silk  thread  connecting  the  spider  is
connected to the roof.   Suddenly,  he remembers my class and sets the spider into
motion and times the period of oscillation. 
(a) If the total length of the thread was 25 m, what period did he measure?
(b) Cowboy Ryan notices another spider up higher which is oscillating with a period of 5
s. How long is the second spider’s thread?
(c) Now, suppose the first spider became scared of Cowboy Ryan’s eye and extended
itself another 2 m closer to the floor (Cowboy Ryan is very tall). What would the period
of oscillation be now?

(2) On the moon where gmoon=
1
6

gearth , a pendulum has a period of 1 s. 

(a) What is the spring constant required for a mass of 1 kg to have the same period of
oscillation? 
(b) What is the length of the pendulum?  
(c) What would be the period of this pendulum on the Earth?

(3)  A  mass  m  is  placed  inside  a  frictionless  hemispherical  bow  with  a  radius  of
curvature R and given a small push up. Find the frequency (f) of small oscillations.

(4) Suppose a rod has a total length L=1 m and a mass m. The rod is hinged about one
end. Find the period of oscillation for this physical pendulum. The moment of inertia

about the end of the rod is given by I=
1
3

mL2 .

(5) Suppose a metal ring of radius R=1 m is hung from a peg. Find the frequency of
small oscillations for this physical pendulum. The moment of inertia for the hoop about
one end is given by I=Icm+mR2

=2mR2 (this involves application of a theorem known
as the parallel axis theorem).

(6) A cylindrical cork bob with a cross sectional area A and height h is pulled a distance
x down into the water from the equilibrium position. Find the restoring force on the cork
and also the frequency of small oscillations about the equilibrium position.

http://www.nps.gov/caha/index.htm
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A mathematical preliminary note: Small angle approximations

sin(θ)=∑
j=0

∞ (−1)
j
θ

2j+1

(2 j+1)!
=θ− θ

3

3!
+ θ

5

5!
−...≈θ when θ is small.

The simple pendulum
The simple pendulum consists of a point mass connected to a string
of length L. The string does not stretch in this version. The system
will undergo simple harmonic oscillation (SHO). Let's see how this
comes about:

The torque about the point where the string is connected is given
by:

|⃗Γ|=|⃗RxF⃗|=mgLsin(θ) .

As pictured, this torque is negative in direction since it produces a clockwise angular
acceleration. Thus, γ=−mgLsin(θ) .  By Newton's laws, a torque results in an angular
acceleration: Γ=Iα . The moment of inertia for a point mass which is at a distance L
from a pivot point is given by I=mL2  . Let's put all this together:

[Γ=−mglsin(θ)]=[ Iα=mL2
α ]⇒α=

−g
L

sin(θ) .

You know, of course, that α and θ are related in pretty much the same way that a and x
are related. On the face of it, however, the restoring force (here, a restoring torque) is
not  linear  in  the  displacement  variable  although it  is  restoring.  We fix this  by  the
assumption of small angles: we keep θ small enough so that sin(θ)≈θ . With this
replacement, we find that we have 

α=
−g
L

θ  or  
d2

θ

dt2 +
g
L

θ=0 .

The solutions to the angular equation are 

θ(t)=θmaxcos(ω t+ϕ) .

We can show this by taking the second derivative of our solution:
d
dt [ dθ(t)

dt ]= d
dt

[−ωθmaxsin(ωt+ϕ) ]=−ω
2
θmaxcos(ω t+ϕ)

This provides the condition required for the angular frequency:

ω=√ g
L

Note:
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Now, you might like to see this written in terms of position variables. We can do this by
using the relationship for arc length: s=Rθ  which here becomes  s=Lθ . Then, the
acceleration is seen through:

a=αL=−
g
L

(Lθ )=−
g
L

s .

However you want to look at it, one thing stands out: the solution is described by:
θ(t)=θmaxcos(ω t+ϕ)  or s(t )=Acos(ω t+ϕ)

We need to be careful about the distinction between angular velocity and
angular frequency. You'll see I've used Ω to represent the instantaneous angular
velocity below.

Ω(t)=−ωθmaxsin(ω t+ϕ)  or v(t)=−ωAsin(ω t+ϕ)

And

α(t)=−ω
2
θmaxcos(ω t+ϕ)  or a(t)=−ω

2 Acos(ω t+ϕ)

Presumably the difficulty that I have in choosing the symbols here leads to the reason
that you won't often see these written in text books as I have done here. Again, what is
the difficulty?
In any event, you can clearly see that for the simple pendulum, we have:

ω=√ g
L

,f=
1

2π √ g
L

,T=2π√ L
g

The physical pendulum
The physical pendulum has a moment of inertia about a pivot which is at a distance “a”
from the end as shown is uniform (with only a little bit more work, we could consider
non-uniform systems) and has a total  length L.  We can use our formulation of  the
simple pendulum to find the frequency for small oscillations about the equilibrium.
The force of gravity is acting through the center of mass (i.e. at L/2) and is producing a
torque about the indicated pivot which is given by:

Γ=−mg(
L
2

−a)sin(θ)

We'll keep a less than L/2 here. As before, we then have:
Γ=Iα

although here, we don't  necessarily know the exact value for I.  The
good thing is that we might just be able to measure it!
Let's see how .... We equate the two expressions for torque:
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−mg(
L
2

−a)sin(θ)=Iα⇒α+
mg

I (
L
2

−a)sin(θ)=0

Let's only worry about small oscillations here so that sin(θ)≈θ . This then gives:

α+
mg

I (
L
2

−a)θ=0

If you want to write this in terms of a displacement variable (s), you would multiply by
L. In any event, you can recognize the form of this equation and you thus know that the
equation describes simple harmonic oscillation with an angular frequency given by:

ω=√ mg
I (L

2
−a)

Now, I promised you might be able to measure I ... here is how ....Suppose you know m,
L, and a. Arrange your system so that you make measurements of the period, T. Then,

ω=
2π

T
.

 Next, invert this equation to find:

I= ω
2

mg(L
2

−a)
Thus, you are indeed able to measure the moment of inertia for the physical pendulum
by a measurement of the period of oscillation. You would still need to know the mass
and the length and also a if you want to calculate I. Note, however, that this is not I
about the center of mass ... rather it is I about the pivot point. Also, it is interesting to
note that if I=mh(r) where r depends only upon the body geometry, then

ω=√ g
h(r) (

L
2

−a)

which is independent of the mass of the system, as one would expect for a simple
pendulum. Also note that the problem fails if a=L/2.
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(1) Cowboy Ryan decides it’s time to take a break from the dairy bar and takes a road
trip to Cape Hatteras for a visit to the lighthouse (http://www.nps.gov/caha/index.htm).
While there, he looks up and notices a very large spider dangling a mere 10 cm above
his  eye.  He  also  notices  that  the  massless  silk  thread  connecting  the  spider  is
connected to the roof.   Suddenly,  he remembers my class and sets the spider into
motion and times the period of oscillation. 
(a) If the total length of the thread was 25 m, what period did he measure?
(b) Cowboy Ryan notices another spider up higher which is oscillating with a period of 5
s. How long is the second spider’s thread?
(c) Now, suppose the first spider became scared of Cowboy Ryan’s eye and extended
itself another 2 m closer to the floor (Cowboy Ryan is very tall). What would the period
of oscillation be now?

Solution:

(a) If the total length of the thread was 25 m, what period did he measure?

ω=√ g
L

=
2π

T
⇒T=2π√ L

g
=2π√ 25

9.8
=10s

(b) Cowboy Ryan notices another spider up higher which is oscillating with a period of 5
s. How long is the second spider’s thread?

T=2π √ L
g

⇒( T
2π )

2

=
L
g

⇒L=g( T
2π )

2

=9.8( T
2π )

2

=6.2m

(c) Now, suppose the first spider became scared of Cowboy Ryan’s eye and extended
itself another 2 m closer to the floor (Cowboy Ryan is very tall). What would the period
of oscillation be now?

T=2π √ L
g

=2π √ 27
9.8

=10.4s

http://www.nps.gov/caha/index.htm
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(2) On the moon where gmoon=
1
6

gearth , a pendulum has a period of 1 s. 

(a) What is the spring constant required for a mass of 1 kg to have the same period of
oscillation? 
(b) What is the length of the pendulum?  
(c) What would be the period of this pendulum on the Earth?

Solution:
We’re really asked in the first part to find the period of a spring-mass system. Thus,

(a) ω=√ k
m

=
2π

T
⇒k=m(

2π

T )
2

=1(
2π

1 )
2

=39.5
N
m

(b) ω=√
gmoon

L
=

2π

T
⇒(2π

T )
2

=
gmoon

L
⇒L=gmoon( T

2π )=9.8
6 ( 1

2π )
2

=0.041m

(c) ω=√ g
L

=
2π

T
⇒T=2π√ L

g
=2π√ 0.041

9.8
=0.41s
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(3)  A  mass  m  is  placed  inside  a  frictionless  hemispherical  bow  with  a  radius  of
curvature R and given a small push up. Find the frequency (f) of small oscillations.

Solution:
It’s easiest to draw the picture here. You can then see that the
mass is constrained to be at a constant length R from the center.
This  is,  then,  the  same  condition  as  we  have  for  the  simple
pendulum. Thus, the frequency of oscillation here is the same as
for the simple pendulum. Thus,

ω=√ g
R

⇒ f=
1

2π √ g
R

(4) Suppose a rod has a total length L=1 m and a mass m. The rod is hinged about one
end. Find the period of oscillation for this physical pendulum. The moment of inertia

about the end of the rod is given by I=
1
3

mL2 .

Solution:
For the uniform physical pendulum, the moment of inertia is given by:

ω=√ mg
I (L

2
−a) .

or

ω=√ g
h(r) (

L
2

−a)

For this system, h(r)=
1
3

L2  . Thus,

ω=√
g

1
3

L2
(L
2

−a)=√3g(
1
2

L−
a
L2 )=√3

2
g=3.8 rad

s

Thus: f=
1

2π
ω=

3.8
2π

=0.61Hz  and T=
1
f
=

1
0.71

=1.64s

Notice that the human arm is approximately a rod 1 m long and pivoted about
one end.

Here’s an interesting problem (only for your interest … this problem won’t be on a
test).
Who’s the more effective walker, a person with legs of length 1 m or a cat with legs of
0.1 m? If we stay within the limit of small oscillations, then we’ll limit the swing for each
to about 100. From problem 1, let’s treat each of the legs as physical pendulums. The
amplitude is restricted to 10 degrees. In one step, the entity moves forward by 
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S=Lθ⇒1x10x
2π

360
=0.17m   person

S=Lθ⇒0.1x10x
2π

360
=0.017m    cat

The angular frequency of each is given, as in problem (1) by:

ω=√
g

1
3

L2
(L
2

−a)=√3g
2L

We can find the period by

ω=2π f=
2π

T
=√3g

2L
⇒T=2π√ 2L

3g

The periods are given by:

T=2π √2L
3g

⇒Tperson≈2π √ 2
3g

=1.64s,

Tcat≈2π√ 0.2
3g

=0.52s

Well let’s find the velocity for each:

vperson=
s
T

=
0.17
1.64

=0.1m/s

vcat=
s
T

=
0.017
.52

=0.033m/s

It  seems then with this simple approximation that indeed people are about 3 times
more effective in crossing a given distance than cats are … however each is restricted
to  walk  at  a  “natural”  gait  which  means  that  the  legs  swing  only  at  the  natural
frequency of oscillation. In reality, other things can happen (dogs, mice, etc). Speaking
of mice … what’s the natural velocity for movement for mice if their legs are only about
0.01m long? The same analysis will lead to T=0.16s for mice and V=0.011m/s! (cats
move about 3x faster than mice under these approximations). Probably, restricting the
angle to 10 degrees is too small. Also, there is much more to this type of dynamics
than this problem describes.
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(5) Suppose a metal ring of radius R=1 m is hung from a peg. Find the frequency of
small oscillations for this physical pendulum. The moment of inertia for the hoop about
one end is given by I=Icm+mR2 (this involves application of a theorem known as the
parallel axis theorem).

Solution:
This system is not uniform but we can still deal with it since we know where the center
of mass of the hoop is.  Thus, the frequency for small oscillations is given by:

ω=√ mg
I (L

2
−a)⇒ω=√

t
2R2 R=√ g

2R

(note: the hoop has a total “length” of 2R which is the diameter, in the sense that
we’ve used the variable L above.
Thus:

f= ω
2π

=
1

2π √ g
2R

=0.352Hz,T=
1
f
=2.84s
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(6)  A cylindrical  cork bob with a cross sectional  area A and a height  h is  pulled a
distance x down into the water from the equilibrium position. Find the restoring force
on the cork and also the frequency of small oscillations about the equilibrium position.

Solution:

The extra buoyant force on the cork is given by the weight
of the fluid displaced. Thus, we have:

Fb=−ρwater g (A x )

here,  the  –  sign  indicates  upward.  This  produces  an
acceleration given by:

mcork a=ρcork (Ah )a

Let’s put the two together to find:
a (Ah)ρcork=−ρwater g (A x )

More simply, this appears as:

a=−
ρwater
ρcork

g
h

x

The cork will undergo simple harmonic oscillation with a frequency given by:

ω=√
ρwater
ρcork

g
h

This is only a first order approximation since damping forces are quite large here.


