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(1) A spring of spring constant k is attached to a mass m which is vibrating
horizontally. Find the frequency of small oscillations about the equilibrium position.

(2) A mass (m=1 kg) is attached to a spring (k=50 N/m) and is stretched to an initial
position xo=0.3 m and released from rest. Find

(a) the frequency of oscillation

(b) the phase

(c) the amplitude

(d) the energy

(e) the position,

(f) the velocity,

(g) the acceleration

(3) A mass (m=5 kg) is attached to a spring (k=25 N/m) and is at an initial position
Xo=0 and has an initial velocity vo=+5 m/s.. Find:

(a) the frequency of oscillation

(b) the phase

(c) the amplitude

(d) the energy

(e) the position,

(f) the velocity,

(g) the acceleration

(4) A mass (m=50 kg) is attached to a spring (k=5 N/m) and is at an initial position
Xo=4+5 and has an initial velocity vo=+5.5 m/s.. Find:

(a) the frequency of oscillation

(b) the phase

(c) the amplitude

(d) the energy

(e) the position,

(f) the velocity,

(g) the acceleration

(5)A disk with a moment of inertia | is connected to a
twistable rubber rod. The rod will apply a torque I'=-b6 to
the disk where b is the angle of twist. Find the frequency of
small oscillations of the disk about equilibrium.
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Simple Harmonic Oscillation
A simple harmonic oscillator is characterized by a system which has a linear (in the
displacement variable) restoring force acting on a mass. The point here is that the

form of the force is
F=—(constant)x(displacement)

F:—[cunstant][diﬁplﬂxﬂmE"t]

restoring

I'Iimzﬂr in displacement

Let's work out the spring-mass system as our first example.

(1) A spring of spring constant k is attached to a mass m which is vibrating
horizontally. Find the frequency of small oscillations about the equilibrium position.

Solution: According to Hooke's law, F=—kx where x is the displacement from
equilibrium. Then, according to Newton's law:

F:ma:md—V:md2X

dt dt?

Let's equate these two expressions.
ma=—-kx or

2 2
d )2(+kx:O:d 2(
dt dt

m + x=0

m

The acceleration of the system is given by

k
a=——x
m

The motion about the equilibrium position is described by:
x:x(t)=Acos(wt+¢)
v;v(t):‘;—’t‘:—wAsin(mt+¢)
a:a(t):?j—\t/:—mzAcos(qu)):—wzx
Note that you may also see the cosines written in terms of the sin function.
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You can see that you have three undetermined constants, A, o and ¢. Let me show
you by example how to model each of these constants. First, let's obtain w. Look at
the equation involving acceleration above:

k
a=——X
m

Substitute in the expressions for x and a:

k X:O:(l):\/E
m m

2
—0° X+

The angular frequency comes out in a very straight-forward manner.
What about the other constants?

Suppose that at t=0 we know
x(t=0)=x, and v(t=0)=v,

Then, using these values for x(t) and v(t) above, we find:

x=Acos(¢) and v:—mAsin(cp):%:—mtan(q))
0

Vo

tan(cp):—mx
0

This in fact does not provide the complete story actually. Let’s look more closely at
the initial states: suppose x,=Acos(¢) is negative while v,=—wAsin(¢) is positive.
Then you need to look a bit deeper: than the principle values. And also for the other
way around. My advice is this: start with positive initial positions and positive initial
velocities if possible. If one or the other is zero it is also easier. In any event, it is
important to check that when you put the phase back into your equations of motion,
you do get the expected initial values.

This provides us with the phase angle ¢.
Now that we have ¢, it is pretty simple to solve for A.

A=—20
~ cos(¢)

A is called the "amplitude" and will give you the maximum displacement of the
system from equilibrium.

What else can we find from this system: What about energy conservation? The total
mechanical energy is given by:
E=K+U
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K:%mvzz%m(—mASin(mtﬂb))z:%mszZSinz((ﬂt"“P)

U:%kXZ:%k(Acos(mtﬂb))z:%kA2C052(®t+¢)

We have already found that u)z\/% , Use this in the expression for K:
1 2 2.2
KZEkA sin“(wt+¢)
Now, add U to K to obtain:
E:%kAz(sinz(mt+q))+cosz(mt+q>)):%kAZ:%mmzA2

The total energy of the harmonic oscillator is a constant of motion.

Here is a useful mathematical point ... the question is this ... What is the time average
of something like sin*(wt+¢) ?.
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Here is the world's simplest way to answer this question:
Consider the trig identity:
cos?(6)+sin’(0)=1

Here, 6 might be allowed to change with time. Now, I'll use <func> to represent the
"time average. Let's find the time average of these things:
<l>=1

(this follows from the observation that 1 always seems to be equal to 1)
<sin‘(wt+¢)>=<cos’(wt+p)>

(this follows from the observation that the two are the same curve but only shifted by
a phase). Thus,

<cosz(6)>+<sin2(e)>:1:%+%:1
or the time average of these trig functions is 1/2.
2 o2 1
or... <cos‘(mt+¢p)>=<sin (mt+q>)>:E
Ok, now what is <U> and <K>?
<U>:<lkX2>:lk<X2>:lk<A2C052(mt+¢)>:lkA2 e Y-
2 2 2 2 2| 2
and
<K>:<%mv2>:%m<032A25in2((1)t+q))>:%mw2A2<Sin2(mt+¢)>:%mw2A2 %):%E

Interestingly enough, the time average contributions from U and K are the same and
each contributes on the average 1/2 of the total energy.
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(2) A mass (m=1 kg) is attached to a spring (k=50 N/m) and is stretched to an initial
position xo=0.3 m and released from rest. Find

(a) the frequency of oscillation

(b) the phase

(c) the amplitude

(d) the energy

(e) the position,

(f) the velocity,

(g) the acceleration

\F A 707@

V0:>tan(q)): —0 :O:)(i):o

o X, WX,

(b) tan(¢)=

Let’s check this: at t=0, we have
x=.3c0s(0)=0.3:v=—7.07x.3xsin(0)=0
So the phase is correct. This pulls info from other parts of the problem.

(c) x(t)=Acos(ot+¢p)=x,=Acos(0)=A=>A=x,=0.3m

(d) E=%kA2:>E:%(SO)(O.3)2:2.25J

(e) x(t)=Acos(wt+¢)=x(t)=0.3cos(7.07t)

(f) v(t)=—oAsin(ot+d)=>v(t)=—2.12sin(7.07t)

(g) a(t)=—w’Acos(wt+¢)=a(t)=—15cos(7.07t)
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(3) A mass (m=5 kg) is attached to a spring (k=25 N/m) and is at an initial position
Xo=0 and has an initial velocity vo=+5 m/s. Find:

(a) the frequency of oscillation

(b) the phase

(c) the amplitude

(d) the energy

(e) the position,

(f) the velocity,

(g) the acceleration

(a) w:\/E:1/§:2.24@
m 5 S

Yo :%S:tan(q)):—oo:(j):—goo or —% radians

(b) tan(¢)=-
0
check: @t=0: x=Acos(90)=0 v,=—2.24Asin(—90)=2.24A

(c) Here, use v(t)=—wAsin(ot+¢) since x,=0.
vo(t):—2.24Asin(2.24x0—%):—2.24A(—1)

_ __D> _
:2.24A—5:>A—2.24—2.24m

We could get this from the total energy also:

_Lvza L= Lia _@_3 _
E_2mv0+2kx0_2kA =>A= Vo= 25(5)_2.24m
(d) at t=0, U=0 and K=Kmax. Thus,
E:Kmaxz%mvéz%(S)(S)Z:GZ.SJ

(e) x(t):Acos(mt+¢):x(t):2.24cos(2.24t—%)

(f) v(t):—wAsin(oot+q>):>v(t):—5sin(2.24t—%)

(9) a(t):—mzAcos(wt+<|>):>a(t):—11.2cos(2.24t—%)
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(4) A mass (m=50 kg) is attached to a spring (k=5 N/m) and is at an initial position
Xo=+5 and has an initial velocity vo=+5.5 m/s. Find:

(a) the frequency of oscillation

(b) the phase

(c) the amplitude

(d) the energy

(e) the position,

(f) the velocity,

(g) the acceleration

_[k_[5_yq,rad
(a) w—\/;— 50—0.32 <

—Vo -5.5 0 -
t = t =—3.44=¢p=-73.96 —1.29 rad
wa:« an(¢) x5 " an(o) =¢ or radians

(b) tan(¢)=
Check:

(c) We can use: x(t)=Acos(wt+¢)

x(0)=x,=Acos(.32x0-1.29)=0.276 Am A= —>

We could get this from the total energy also:
E:%mv§+%kx§:%kA2:>%kAZ:%x50x5.52+%x5x52:756.25+62.5:818.75

A=y2x818.75/5=v327.5=18.1m

Make sure you were able to get the result shown above!
If you didn’t, is your calculator set for the proper mode?

(d) E:%kAZ:%(S)(18.1)2:819J

(e) x(t)=Acos(wt+¢)=x(t)=18.1cos(0.32t-1.29)
(f) v(t)=—wAsin(ot+¢)=>Vv(t)=—5.792sin(0.32t-1.29)

(g) a(t)=—w’Acos(ot+¢)=a(t)=—1.853cos(0.32t—1.29)
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(5)A disk with a moment of inertia | is connected to a twistable rubber rod. The rod
will apply a torque TI'=—b6 to the disk where b is a constant with units of Nm/”rad”
and 0 is the angle of twist. Find the frequency of small oscillations of the disk about
equilibrium.

Solution:

This torque is a restoring torque: it always wants to restore the system to the angle
0=0. According to Newton’s laws, an externally applied torque produces an angular
acceleration:

I'=la

We thus equate the two expressions to obtain:

|oc=—b6=>oc=—$6

Calculus people recognize the differential equation:
d’0 (b 0=0

a1

Compare this to the differential equation for the spring mass system, which was:
d’x [k
dt?

+ x=0

m

There, the frequency was o= % so by direct comparison, you can see

that here the frequency of small oscillations is given by:
b

W=4—+

but | can also show this a bit more directly:

Since: a:—lg , consider a point on the disk at a distance r from the center. Multiply

both sides of this equation by r to obtain:

b b
rOL:—Tre:’a:—TS

where a is the tangential acceleration and s is the position. From this description, it is
then clear that the form is quite similar to the normal spring-mass system, and will
rotate with the given frequency. Now suppose that the spring constant of the rubber
rod was k and the disk has a mass m. Then there would also be a frequency of
oscillation in the vertical direction. This frequency would be given by:

k
w=4— .
m
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If the two frequencies of oscillation were very close to each other, you would see an
amazing result: the motion of the system would bounce completely with out twisting,
then twist completely without bouncing and the two modes would be out of phase
with each other if you started the system at the amplitude of one or the other. This is
a form of resonance and the mechanism by which this happens is called “mode
coupling” since the two modes are connected by a mechanical system.

This type of system is an example of a “Wilberforce pendulum” and you can see one
in action here:

http://physics.kenyon.edu/coolphys/FranklinMiller/protected/wilber.html
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