
r23 Physics 240: Worksheet 19 Name: ________________

(1) Suppose a force, F⃗=F ĵ   is applied to a solid wheel of mass M and radius R at the 
edge and at the position R⃗=R î   which is at right angles to the direction of the force. 
The magnitude of the force varies with time as F=ct [in the SI system, c has units of 
N/s]. Find the angular velocity and angular position at some later time t if the wheel 
was initially at rest and initially at  =0. Discuss the additional cases where α=−hθ  
and α=bω   where a and b are constants.

 (2) A meter stick of mass m=0.05 kg is placed on a pivot at x=0.7 m. A mass m1=0.5 
kg is placed at x=0.3 m. Where would a mass m2=0.8 kg need to be placed in order to 
balance the system?

(3) Solve problem 2 considering the axis to be at the center of mass (Not! The pivot).

(4) Show that a meter stick which is in equilibrium about one axis is in equilibrium 
about all axes. 

(5) A rod of mass M and length L is attached to a wall as shown. A mass m is placed on 
the rod at a distance x from the wall. Find the tension in the cable, and the forces on  
the wall.
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(1) Suppose a force, F⃗=F ĵ   is applied to a solid wheel of mass M and radius R at the 
edge and at the position R⃗=R î   which is at right angles to the direction of the force. 
The magnitude of the force varies with time as F=ct [in the SI system, c has units of 
N/s]. Find the angular velocity and angular position at some later time t if the wheel 
was initially at rest and initially at  =0. Discuss the additional cases where α=−hθ  
and α=bω   where a and b are constants.

Solution: In general, the angular acceleration is defined by:

α≡
dω
dt

⇒dω=αdt

∫
0

ω

dω=∫
0

t

αdt⇒ω=∫
0

t

αdt

If the angular acceleration is a constant, we then see ω=α t  but here, we are given 
that the force applied varies with time as ct. In order to find out what the angular  
acceleration is, we need to find the torque. Thus,

Γ⃗=R⃗ x F⃗=RF ( î x ĵ )=RFk̂

This torque would be considered to be in the positive direction. The magnitude of the 
torque is given by:

|⃗Γ|=RF=Rct

Now that we have the torque, we can find . First, we'll also need the moment of inertia 

which, for a solid disk rotating about its central axis is given by I=
1
2

mR2  . Thus, to 

find  we use:

(Γ=Rct )=(Iα=
1
2

mR2α)⇒α=
2Rct

m
R2=

2ct
mR

We thus can find the angular velocity as:

ω=∫
0

t

αdt=
∫
0

t

2ct

mR
dt=2

c
mR

∫
0

t

tdt=2
c

mR
t2

2
= ct2

mR

Now, in order to find the position as a function of time, we need to once again apply the 
definition of angular velocity:

ω=dθ
dt

⇒dθ=ωdt⇒∫
0

θ

dθ=∫
0

t

ωdt⇒θ=∫
0

t

dt
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If we had an angular velocity which varied linearly with time (i.e. a constant angular 

acceleration), then we would get the familiar equation of motion for : θ=
1
2

ω t2  Here, 

however, we've seen that this is not the case, indeed, ω=
ct2

mR
 . Thus, we find  as:

θ=∫
0

t

ωdt=∫
0

t
ct2

mR
dt= c

mR
∫
0

t

t2dt= c
mR

t3

3

Now, what if α=bω  ? You will recognize a similar problem to this previously.

α≡dω
dt

⇒bω=dω
dt

⇒bdt=dω
ω ⇒∫

ω0

ω dω
ω =b∫

0

t

dt⇒ln ( ω
ω0 )=bt⇒ω=ω0ebt

Of course, here 0 can't be 0 since the particle won't start rotating at all, then.

Now what if α=−hθ   where h is some  constant.
Then:

α=
dω
dt

=
d2θ
dt2 =−hθ⇒

d2θ
dt2 +hθ=0

There are two cases to consider for h:
(1) let h be positive. The solutions for the angle are then:

θ(t)=θ0cos (ω0t+ϕ ) ;ω0=√h

(this motion is known as simple harmonic oscillation which we’ll study later)

(2) let h be negative. The solutions for the angle are then:
θ(t)=θ0e±√ht

which is either exponential increasing or exponentially decreasing with time. Finally, 
the easiest of all situations is the case of a constant angular acceleration. In this case, 
you have:

Γ⃗=R⃗x F⃗=constant

You can still apply the equations of motion to obtain instantaneous quantities:

Γ⃗=dL⃗
dt

= I
↔

⋅d ω⃗
dt

(here, I’ve used more elaborate notation hinting at the tensor nature of I and the vector 
nature of ). We are not going to that degree of depth here so we will look at rotations 
about one axis of the moment of inertia. Thus, dealing only with magnitudes, we have:

γ=I
dω
dt

=Iα⇒α=Γ
I
⇒ω=ω0+[ΓI ]t⇒θ=θ0+ω0 t+

1
2 [ ΓI ]t2

Again, you would also talk about average angular velocity if you so desire. This would 
be defined by:
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<ω>=
∫
0

t

ω(t)dt

∫
t=0

t

dt

=ω0+
∫
0

t

ωdt

t
=ω0+

1
2

at

And, the angle turned through would be given by:

Δθ=<ω>t=ω0 t+
1
2

α t2

Notice that we could talk about average angular velocity in the same way as we did for 
translational quantities. Looking back at worksheet 2, we had:

<v>=v0+
1
2

at .

Now if we multiply these quantities by r (assuming rigid body rotation pointing to a 
single mass) we have:

<v>=<ω>r⇒
v0

r
+1

2
a
r

t=ω0+
1
2

α t⇒<ω>=ω0+
1
2

α t⇒Δθ=<ω>t=ω0+
1
2

α t2

(this is the approach for the non-calculus class here).
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(2) A meter stick (L=1m) of mass m=0.05 kg is placed on a pivot at x=0.7 m. A mass 
m1=0.5 kg is placed at x1=0.3 m. Where (x2) would a mass m2=0.8 kg need to be 
placed in order to balance the system?

Solution: You will want to sketch in the forces present in this problem. Thus:

The condition for static equilibrium is: ∑ F⃗=0⃗: ∑
any axis

Γ⃗=0⃗ .

Let’s apply the first condition:

∑ F⃗=0⇒F−m1g−mg−m2g=0⇒F=(m1+m+m2)g

Choose  the  pivot  point  as  our  axis  since  one  torque  vanishes  there.  However, 
remember that the weight of the meter stick acts at its mass which is ½ of the distance 
from one end to the other end of the meter stick. I’ve also shown this (in red) in the 
second sketch.

Let’s apply the second condition:

∑ Γ⃗pivot=0⃗⇒+(m1g)[x−x1]+(mg)[x−L
2 ]+F[0]−(m2g)[x2−x]=0

In  this  case,  using  the  first  condition  is  not  necessary  since  I’ve  chosen  my  axis 
carefully.  You  will  also  notice  that  I’ve  kept  the  distances  positive  and  correctly 
reflected the sign convention in the torques that if the rotation is counter-clockwise, the 
torque is positive.
Solving the second condition gives:
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0=+(m1g)[x−x1]+(mg)[x− L
2

]+F [0]−(m2g)[x2−x ]

⇒m1[x−x2]g+m[x−
L
2

]g=m2g [x2−x ]

⇒m1[x−x1]+m [x−L
2 ]+m2x=m2x2

⇒x2=
m1

m2

[x−x1]+
m
m2

[x−L
2 ]+x

We can now put numbers on this result:

x2=
m1

m2

[x−x1]+
m
m2

[x−L
2

]+x= .5
.8

[.7−.3 ]+0.05
.8

[.70−.5]+.7

x2=
.5x.4

.8
+ .05x.2

.8
+ .7x.8

.8
= .2+.01+.56

.8
= .77

.8
=0.9625m
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(3) Solve problem 2 considering the axis to be at the center of mass (Not! The pivot).

A sketch of the situation remains the same as in problem 2:

The condition for static equilibrium is: ∑ F⃗=0⃗: ∑
any axis

Γ⃗=0⃗

 
Let’s apply the first condition:

∑ F⃗=0⃗⇒F−m1g−mg−m2g=0⇒F=(m1+m+m2)g

Now, choose the center of mass as our axis. 

Let’s apply the second condition:

∑ Γ⃗pivot=0⃗⇒m1g[ L2−x1]+mg[0]+F[x−L
2 ]−m2g[x2−

L
2 ]=0

You will  notice that I’ve kept the distances positive and correctly reflected the sign 
convention  in  the  torques  that  if  the  rotation  is  counter-clockwise,  the  torque  is 
positive. Solving the second condition gives:

m1[ L2−x1]+m[0]+F
g [x−L

2 ]=m2[x2−
L
2 ]

m1

m2
[ L2−x1]+ F

m2g [x−L
2 ]=[x2−

L
2 ]

⇒x2=
L
2

+
m1

m2
[ L2−x1]+ F

m2g [x−L
2 ]
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It is pretty clear that we’re going to have to use the condition of F to complete this 
problem. Thus:

⇒x2=
L
2

+
m1

m2
[ L
2

−x1]+(m1+m+m2)
m2

[x−L
2 ]

x2=
L
2 [1+

m1

m2

−
(m1+m+m2)

m2
]+x1[−m1

m2
]+x [ (m1+m+m2)

m2
]

⇒x2=
L
2 [ m2+m1−m1−m2−m

m2
]+x1[−m1

m2
]+x [ (m1+m+m2)

m ]
⇒x2=[−m

L
2

−m1x1+(m1+m+m2)x

m2
]

let’s put numbers on this now:

x2=[−m
L
2

−m1x1+(m1+m+m2)x

m2
]=−0.05(0.5)−0.5(.3)+(0.5+0.05+0.8)0.7

0.8

=0.025−0.15+0.945
0.8

=0.77
.8

=0.9625m

The answers are the same. 
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(4) Show that a meter stick which is in equilibrium about one axis is in equilibrium 
about all axes. 

Let’s assume that the axis the meter stick is in equilibrium about is the origin. Then 
each force F⃗i   is acting at a position R⃗i  and the torque about the origin is given by:

Γ⃗=∑ τ⃗ i=∑ R⃗ ixF⃗i=0⃗

Now, at some other axis  R⃗1  the torques would be given by:

Γ⃗1=∑ [R⃗1−R⃗i ] xF⃗i

where the vector pointing from R⃗i to R⃗1 is given by R⃗1−R⃗i .

Thus, the torque about axis 1 is given by:

Γ⃗1=∑ [R⃗1−R⃗i ] xF⃗i=∑ R⃗1xF⃗i−∑ R⃗ixF⃗i=R⃗1x∑ F⃗i−∑ R⃗i xF⃗i

The last term in this expression is zero by the second condition for static equilibrium.
Also, since the meter stick is in equilibrium, we have the first condition satisfied:

∑ F⃗=0⃗

Thus, we necessarily have:
Γ⃗1=R⃗1x∑ F⃗i−∑ R⃗ixF⃗i=0⃗+0⃗=0⃗

Thus if the system is in static equilibrium about one axis, it is in static equilibrium about 
any axis.
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(5) A rod of mass M and length L is attached to a wall as shown. A mass m is placed on 
the rod at a distance x from the wall. Find the tension in the cable, and the forces on  
the wall. Provide numerical values for the case L=1m, M=2kg, m=1 kg, x=(1/3) m, 
θ=450.

The system is in static equilibrium. Thus: ∑ F⃗=0⃗: ∑
any axis

Γ⃗=0⃗ .

 
We need to choose an axis to calculate torques about. 
I will choose the point where the rod touches the wall.

The first condition gives: Rx−Tx=0:Ry−Mg−mg+Ty=0 .
 

We have from the second condition: −Mg(L
2 )−mgx+Ty L=0⇒Ty=

1
2

Mg+mg
x
L

 
But this tension is related to the tension in the cable by: Ty=T sin(θ)
 

Tsin(θ)=1
2

Mg+mg
x
L

⇒T= g
sin(θ) [ M2 +m

x
L ]

We can now find the reaction forces:

Having found T, we have Tx=T cos(θ)=Rx  .

Having found Ty, we have: Ry=Mg+mg−Ty

 
The angle that this force points at is:

tan(ϕ)=
Ry

Rx
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Numerical results for this problem:

Ty=
1
2

Mg+mg
x
L
=9.8+9.8(

1
3

)=13.07N

Ty=T sin(θ)⇒T=
Ty

sin(45)
=13.07N

.707
=18.48N

Tx=T cos(θ)=13.07N=Rx

Ry=29.4N−13.07N=16.33N

The angle is given by: tan(ϕ)=
Ry

Rx

=16.33
13.07

=1.249⇒ϕ=51.330

Among other things, this tells you how strong both your wall and your cable need to be 
to  support  the mass.  Also  you can see how strong the rod needs to  be here.  For 
example, you will need a minimum of 18.5N test fishing line to hold up this system. 
However, in building design, you’re going to want to give significantly more safety than 
this, perhaps a factor of 10 or so at least. This means you’d choose 185N test fishing 
line in actuality.


