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(1)  Hooke’s  law  states  that  the  force  exerted  by  a  spring  is  given  by
F⃗=−k (Δ x⃗ )=−k (x⃗f−x⃗i) . This means the more you push or pull on a spring, the more

the spring presses or pulls back and in the opposite direction of the displacement of
the spring. Find the work an external agent does to compress the spring through a
displacement Δ x⃗  . Then find the work done by the spring in being compressed by
the same displacement. Note: k is the spring constant measured in N/m in the SI
system and is positive. You will measure the spring constant in lab 5.

(2) Suppose a bungee jumper1 (m=100 kg) has bungee cords with a spring constant
of 40 N/m. The bungee jumper jumps off of a very high bridge and falls for 20 m until
the bungee cords start to stretch. How far from the point of the jump will the bungee
jumper be when the bungee jumper finally stops.
1 Don’t try this.

(3) Two masses are arranged on a frictionless table as shown. When the second mass
has fallen through a distance h, how fast is the system moving?

(4)  Show  the  generalization  of  energy  conservation  to  include  non-conservative
forces. Then if a mass is lying on a floor with a coefficient of friction  is kicked so that
it has an initial velocity v, how far will it go?

(5) Suppose a mass m slides down an inclined plane (of angle ) with a coefficient of
friction given by . How fast is the mass moving at the bottom of the plane if it falls
through a vertical height y after being given a theoretical tiny push?
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(1) Hooke’s law states that the force exerted by a spring is given by
F⃗=−k (Δ x⃗ )=−k ( x⃗f−x⃗i) .

Find the work an external agent does to compress the spring through a displacement
Δ x⃗ .  Then find the work done by the spring in  being compressed by  the same

displacement. Note: k is the spring constant measured in N/m in the SI system and is
positive. You will measure the spring constant in lab 5.

I am trying to be very clear here that the coordinate that appears in Hooke’s law
really refers to spring compression or expansion and not position in space. The action
of the force is such that the more you push or pull on a spring, the more the spring
presses or pulls back and in the opposite direction of the displacement of the spring. 

The following words are important and I have chosen them carefully.
There is something important to understand at the very beginning here: the work
done on a system and the work done by a system are two different things. If
work (W) is done on a system by an external agent, we would say that this work was
positive (so long as F and s are in the same direction) from the point of view of the
agent (the agent did work) and negative from the point of view of the system (the

system had work done on it). This is what I’ll call the physics
sign convention.
We can determine the work done graphically because the
work is given by the area under a plot of force-displacement
graph as I am showing below. I should explain that what this
plot shows is the amount of force that would be exerted at a
certain  value  for  the  compression  of  the  spring  with  the
spring initially uncompressed.
Looking at the diagram, W1 is the work required to compress
the spring up to the amount of compression that I’ve called
the “first compression.” W1 is equal to the area under the

curve which is the grey shaded area. It is given by:

W1=
1
2

[Δ x1−Δ x0 ] [F1−F0 ]

But if the spring obeys Hooke’s law then we have:
[F1−F0 ]=F1=k [Δx1−Δx0 ]=k (Δ x1 )

So the quantity W1 is given by:

W1=
1
2

k (Δx1 )
2

where I have assumed the x0 and F0 are both zero. Now to calculate the work required
to compress the spring from X1 to X2, you will need again to calculate an area but this
area is a bit more complicated here. If fact, we have:

W2=[Δx2−Δx1 ] [F1−F0 ]+
1
2

[Δx2−Δx1 ] [F2−F1 ]=k x1 (Δx2−Δ )+
1
2

k (Δx2−Δ x1 )
2
=

1
2

k (Δx2 )
2
−

1
2

k (Δx1 )
2
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The total work that the agent had to do to make the initially uncompressed spring
have a compression given by x2 is then:

W

[
by

agent
on

spring]
=

1
2

k (Δ x2 )
2

Also notice: there is work done but no “change in work.”
 This means that it is improper to use an expression such as this:

ΔW=....

Instead, you must refer to work as simply W, but not ΔW.

Now for the calculus version of this:
Our starting point is a statement without proof that the Hook’s law force is

conservative.
We then have:

đW=F⃗⋅ds⃗

I have used the funny looking symbol  ( đ which is, unicode 0111) for the differential
for a very good reason: work is a funny kind of beast: it is not an exact differential

mathematically. What that means for us in more realistic terms is this:
∫đW=W,  not ! ΔW

In physics, there is not an entity called “change in work” but there are small
quantities of work, which added up give the total work. 

When the agent compress the spring, the agent pushes the spring with a force that is,
in fact, in the same direction as the displacement so the dot product is eliminated and

the vectors are also eliminated. The total work done is given by:
W=∮đW

Before I go further, let me explain that little circle: if you do not have a conservative
force, then the work done will depend upon the path that you take. In such a case the
integral looks like this:

W=∫đW

 A frictional force is an example of a non-conservative force and this would depend
upon the path taken. Without proof, however, I will state that Hook’s law represents a
conservative force, as are gravitational forces and electrostatic forces.

We thus have all we need to calculate the work done by the agent:

W by
agent

on
spring

=∮đW= ∮
s1→s2

F⃗⋅ds⃗=∫
s1

s2

F⃗conservative⋅ds⃗=∫
Δx1

Δx2

k (Δ x⃗spring )⋅d (Δ x⃗spring )=
1
2

k (Δx2)
2
−

1
2

k (Δ x1 )
2
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Now, suppose a mass m is placed on the compressed spring. After the spring is
released, how fast will the mass move when it passes through the equilibrium

(uncompressed) position of the spring?

Answer: Apply conservation of energy:
Ui=

1
2

k x2 Uf=0

K i=0 Kf=
1
2

mv2

.

This gives:

 Ui+K i=Uf+K f ⇒
1
2

kx2
+0=0+

1
2

mv2
⇒v=±x√ k

m
 .

 Which of the signs is chosen depends upon the direction the spring was initially
compressed.

As a modification, suppose the spring were pointed upward. What happens then? The
answer is not so simple mathematically but can still be solved. Here I will solve this:
spring  is  initially  compressed  a  distance  along  the  y  axis  equal  to  -y.  The
uncompressed position of the spring is y=0. What is the velocity that a mass m will
have when placed on that spring and released?

Ui=Ugi
+Usi

=−mgy+
1
2

k y2:Uf=Ugf
+Usf

=0+0

K i=0:K f=
1
2

mv2

Use this in the energy equation  to get:

mgy−
1
2

k y2
+

1
2

mv2
=0⇒

1
2

mv2
=

1
2

k y2
−mgy⇒v2

=
k
m

y2
−2gy ⇒v=±√ k

m
y2

−2gy

This is the velocity that the mass has at the instant it would leave the spring.

Now,  suppose a  mass m is  placed on the compressed spring.  After  the spring  is
released,  how  fast  will  the  mass  move  when  it  passes  through  the  equilibrium
(uncompressed) position of  the spring?  This problem is horizontal  on a frictionless
table. I will take the uncompressed position of the spring to be zero.  Then,

Ui=
1
2

kx2 :Uf=0:K i=0:kf=
1
2

mv2

Use this in the energy equation:

0=ΔU+ΔK⇒−
1
2

k x2
+

1
2

mv2
=0⇒v=±√ k

m
x

The correct sign choice depends upon how you are pointing your spring.

.
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(2) Suppose a bungee jumper1 (m=100 kg) has bungee cords with a spring constant
of 40 N/m. The bungee jumper jumps off of a very high bridge and falls for 20 m until
the bungee cords start to stretch. How far from the point of the jump will the bungee
jumper be when the bungee jumper finally stops.
1 Don’t try this.

We have already seen that work done on a system can be calculated, and you need to
be a little bit careful about specifying exactly what is doing the work in order to get
the sign of the work represented correctly.

Energy is conserved. This means that ΔUgravitational+ΔUspring+ΔK=0 . Notice that we are
able to ignore the details of  the velocity and kinetic energy here. In reality,  wind
resistance will  slow the jumper until  a “terminal velocity” is obtained (this is what
happens to sky divers). On to the problem: we calculate each of the changes:

ΔUgravitational=mgyf−mgyi=mgyf

 
Now the next  thing to  consider  is  this:  the  final  position  of  the  jumper  does  not
correspond to the expansion of the cord. Since the coordinate in Hooke’s law strictly
refers to the spring expansion, we need to reflect this in the potential energy of the
spring.
Let us call the zero in potential energy the unstretched position of the cord. The initial
position of the jumper is then +20.
Let us calculate each of the terms required for the energy equation.
(1) Since the jumper is initially at rest and at the end the jumper is at rest:

ΔK=Kf−K i=0

(2) The change in gravitational potential energy is going to be given by:
ΔUg=mg (yf )−mg(20)

where yf is the final position of the mass.
(3) The change in potential energy of the spring is given by:

ΔUs=
1
2

k (yf )
2
−0=

1
2

k (yf )
2

Again, yf is going to need to be a negative quantity as this problem is set up.

If we put everything together, we then have:

mgyf−20mg+
1
2

k yf
2
=0⇒yf

2
+

2mg
k

y−
40mg

k
=0

I will use this: mg/k=24.5 for this problem.
We can now use the particular numerical values for this problem:

yf
2
+49yf−980=0

⇒yf=
−49±√492

−4(−980)

2
=

−49±√2401+3920
2

=
−49±√6321

2
=

−49±79.5
2

= 15.3m
−64.3m
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Now as the problem has been set up, the physically valid solution is the one with the
negative coordinate so we have:

yf=−64.3m

We can check our work by ignoring the initial 20 m. In this case, the original equation
becomes

mgy+
1
2

k y2
=0⇒y=−

2mg
k

=−
1960

40
=−49  or 0 .

 
In this case, the fact that y is negative is implied by our change in the gravitational
potential.  Then answer: the jumper stops 84 m below the bridge (don’t forget the
original 20). Whew!!

There is a way to do this without using the quadratic formula and it is fairly interesting
to see this done without the quadratic formula.
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(3) Two masses are arranged on a frictionless table as shown. When the second mass
has fallen through a distance h, how fast is the system moving?

The solution to this is shown as an animated gif in the class links:
http://logcabinphysics.x10.bz/animations/energy1.gif

However, I also now want to write out the solution.
Let’s  call  the  mass  on  top  of  the  table  m1 and the  hanging  mass  m2.  Energy  is
conserved so we have:

ΔUg+ΔK=0 .

We need to calculate each of the terms. I will call the y coordinate at the top of the
table zero. Thus:
ΔUg=m2gy−0=−m2gh−0=−m2gh

ΔK=
1
2

(m1+m2 )v
2 ⇒−m2gh+

1
2

(m1+m2 )v
2
=0⇒v=±√

2m2gh

(m1+m2)

The particular sign for the velocity really depends upon the mass that you are asking
about: for the first mass, positive. For the second mass, negative.

http://logcabinphysics.x10.bz/animations/energy1.gif
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(4)  Show  the  generalization  of  energy  conservation  to  include  non-conservative
forces. Then if a mass is lying on a floor with a coefficient of friction  is kicked so that
it has an initial velocity v, how far will it go?
Solution:
The generalization of  the equation expressing energy conservation is  to include a
term reflecting the loss of kinetic energy due to non-conservative forces, ΔKNC . The
more  general  form  of  the  equation  then  becomes  ΔKNC=ΔKC+ΔU where  the
subscript c means “conservative”. The only trick to using this equation is to be able to
calculate ΔKNC . This is calculated from the work-energy theorem:

ΔKNC=work [
by

system
against

non conservative
forces

]
Since the only non-conservative force we’ll be using in this course is friction, we can
say that mostly for us, this calculation reduces to  ΔKNC= f⃗⋅⃗x . Let’s see how to do
this for the given example:

ΔU=Uf−Ui=0

ΔK=Kf−K i=0−
1
2

mv2

ΔKNC= f⃗⋅x⃗=−μmgx

We put this together to get: 

−μmgx=−
1
2

mv2
⇒x=

v2

2μg
.
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(5) Suppose a mass slides down an inclined plane (of angle  ) with a coefficient of
friction given by . How fast is the mass moving at the bottom of the plane if it falls
through a vertical height h after being given a theoretical tiny push?

Solution:  It  is  best  to  draw a  free  body  diagram here
because you need to find the frictional force.  If you do
this, you will find 

N=mgcos(θ)

so that the frictional force is given by 
f⃗=−μmgcos(θ) î

where I  have rotated coordinates  down the plane.  The
distance the mass moves down the plane is related to the
distance down the plane (x) by:

h=xsin(θ)

so that 

x=
h

sin(θ)
.

The work against friction is given by 

ΔKNC=−μNx=−μ
mgcos(θ)h

sin(θ)
=−μmghcot(θ) .

The change in potential energy is 
ΔU=Uf−Ui=−mgh

and

ΔK=Kf−K i=
1
2

mv2

We put all this together:

ΔKNC=ΔKC+ΔU⇒−μmghcot(θ)=−mgh+
1
2

mv2 .

We can simplify and solve this for v:

−μghcos(θ)=−gh+
1
2

v2
⇒

1
2

v2
=gh (1−μcot (θ)) .

If we carry this a bit further, we find the solution for v: 
v=√2gh (1−μcot(θ)) .

You might wonder how careful you need to be when making up problems like this.
Look at the thing under the square root: if =0, we are in the frictionless case and v
correctly  reproduces that for  free-fall  (you ought  to be able to show this  yourself
please try!). Problems will happen when

1−μcot (θ)=0⇒cot(θ)=
1
μ  or tan(θ)=μ .

You’ve seen this before! For tan()<, the problem won’t work since the mass won’t
slide with a constant velocity.


