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Don’t forget: discussion of Newton’s third law and bugs (F12=-F21).
(1) A mass is on an inclined plane as shown. Find the acceleration and tension of the 

system in case it is accelerating towards the 
right. The coefficient of friction here is .

Then, if a=0, find the required condition for .

(2) Work defined. Suppose a mass at rest is lying on a frictionless table and a force F is 
applied to the mass parallel to the surface of the table through a distance x. What is the 
change in velocity of the mass?

(3) A force F is applied to a mass M which is just equal to only a slight amount more than 
the mass (but the difference is not measurable). The mass is lifted through a height y 
with a constant velocity.
(a) What is the work done by F?
(b) Did this result in a change in K?
(c) Where did this work go to?
(d) Is the work energy theorem general enough?
(e) Define total mechanical energy (E) and show that if E is conserved, we have a new 
tool for solving problems.

(4) Distinguish between non-conservative systems and conservative systems. Then, 
provide a more general definition for work.

(5) Hooke’s law states F⃗=−k Δ x⃗  (the more you compress a spring, the more the 
spring presses back and in the opposite direction of the compression). Find the work 
required to compress the spring through a distance x. Note: k is the spring constant 
measured in N/m in the SI system. You will measure this in lab.



r23 Physics 240: Worksheet 09 Name _________________

(1) A mass is on an inclined plane as shown. Find the acceleration and tension of the 
system in case it is accelerating towards the 
right. The coefficient of friction here is .

Then, if a=0, find the required condition for .

Solution: the two free body diagrams are shown 
below:

Where I have “unbent” the diagram for mass m2. We apply Newton’s laws to this, 
assuming an acceleration in the +x direction:

m2g−T=m2a

∑ F⃗=ma⃗⇒T−μm1gcos(θ)−m1gsin(θ)=m1a
N−m1gcos(θ)=0

We eliminate the tension by addition to give the acceleration:
m2g−T=m2a

T−μm1gcos(θ)−m1gsin(θ)=m1a
+  -------------------------------------------------
m2g−μm1gcos(θ)−m1gsin(θ)=(m1+m2)a

so solve for the acceleration:

m2g−μm1gcos(θ)−m1gsin(θ)=(m1+m2)a

⇒a=
m2g−μm1gcos(θ)−m1gsin(θ)

(m1+m2)

We can then also easily find the tension from either equation although I think the first 
might be easier:

m2g−T=m2a⇒m2(g−a)=T⇒T=m2g[1−
m2−μm1cos(θ)−m1sin(θ)

(m1+m2) ]
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Now, let’s look at the special case a=0. In this case, we have the following results:

m2g−T=0
+T−μm1gcos(θ)−m1gsin(θ)=0
-----------------------------------------------
m2g−μm1gcos(θ)−m1gsin(θ)=0

Tension can be eliminated by addition as I have shown above.

m2g−μm1gcos(θ)−m1gsin(θ)=0⇒
m2

m1

−μcos(θ)−sin(θ)=0

Solving for , we get:

μcos(θ)=
m2

m1

−sin(θ)⇒μ=

m2

m1

−sin(θ)

cos(θ)
.
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(2) Work defined. Suppose a mass at rest is lying on a frictionless table and a force F is  
applied to the mass parallel to the surface of the table through a distance x. What is the 
change in velocity of the mass?

According to Newton’s laws, for a constant force, F=ma=m
Δv
Δ t

. Let’s look at the 

3rd equation  of  motion,  namely  v2=vi
2+2aΔx .  Solve  this  for  acceleration: 

a=
v2−vi

2

2Δx
. Now, use this in Newton’s law to give (I am  dropping vectors here):

F=m( v2−vi
2

2Δx ) .  Multiply  the  top  and  the  bottom  by  x  to  give: 

F(Δx)=
1
2

m (V2−vi
2) . The term F(Δx)  is given a special name: it is the external 

work (W) performed. Likewise, the term 
1
2

mv2 is also given a special name: it is the 

kinetic  energy (K) of  the  system.  We thus  have  the  development  of  a  fundamental 
theorem which is the work – energy theorem:

External work = change in kinetic energy.
Symbolically, we have: W=ΔK .

In the present problem, we need to calculate each side of this equation and put the two 
results together: as I show below:

(1) Calculate Work: W=F (Δx ) .

(2)  Calculate K: ΔK=Kf−K i=
1
2

mv2 .

 (3) Put the two together: FΔ x=
1
2

mv2

.

(4) Solve for the velocity:

v=±√2FΔ x
m

.

The correct solution here is the + solution since the force is in the +x direction.
One subtle thing here: I’ve used the concept that there is such a thing as an initial and a final kinetic energy. 
Within a constant frame of reference, in potential free regions of space, this would be true in the absence of  
non-conservative forces. However, what is measured as K in one frame of reference is not the same in  
another frame. However, at low speeds, the change in kinetic energy is going to be invariant in an inertial  
reference frame. This is my disclaimer which does take this many words to say.

There are lots of sign conventions one can also use: work can be done by a system or 
work can be done on a system. Also, work can be done by a force in the direction of 
displacement or work can be done by a force in the opposite direction of displacement.  
You can thus see that there are 4 possible outcomes. As I am defining work above, and 
also below, I am defining the work done on a system by an external entity which is 
exerting a force F on the system while the system is undergoing a displacement Δ s⃗  as 
positive and it is given by: W=F⃗⋅Δ s⃗  . As an example, work done by the gravitation 
force in moving an object through a distance h ,  noting that  Δ y=yf−yi=−h is a 
positive quantity:



r23 Physics 240: Worksheet 09 Name _________________

W=[−mg ĵ ]⋅[−h ĵ ]=+mgh .

However, suppose that the object was thrown upward from the ground through a distance 
h to  the apex of  its  trajectory.  The work done by the gravitational  force during this 
interval is given by:

W=[−mg ĵ ]⋅[+h ĵ ]=−mgh

If, however, you asked what the work the object was doing on the entity producing the 
gravitational force, the signs are exactly opposite. For our purposes, I’ll be concentrating 
on the work done upon an object by an external entity, just in case I get too short in my 
descriptions.
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(3) A force F is applied to a mass M which is just equal to only a slight amount more than 
the mass (but the difference is not measurable). The mass is lifted through a height y=h 
with a constant velocity.
(a) What is the work done by F?
(b) Did this result in a change in K?
(c) Where did this work go to?
(d) Is the work energy theorem general enough?
(e) Define total mechanical energy (E) and show that if E is conserved, we have a new 
tool for solving problems.
Solution:
(a) w=FΔ y=mgh .
(b) no
(c) This work went into the term mgh.
(d) no
(e) Total  mechanical  energy is  E=U+K. In physics,  this is  a conserved quantity.  The 
meaning of this is the following equation:

ΔE=0⇒Ui+K i=Uf+K f .
U is the symbol that we’ll use for potential energy. For problems involving gravity close 
to the surface of the Earth (or, to be more precise, over relative short distances), we have 
that U=mgh. Let’s show how this can be used to solve free-fall problems:
(i) A mass m at rest falls through a distance h. Find the velocity at this point.
(1) Calculate the changes:

Ui=mgh:Uf=0:K i=0:K f=
1
2

mv2 .

(2) then apply the conservation of energy:

Ui+K i=Uf+K f ⇒0+mgh=0+
1
2

mv2⇒v2=2gh⇒v=±√2gh

In the context of this problem, the negative solution is correct.

(ii) A mass is thrown straight up with an initial velocity v. How high does the mass go?
(1) Calculate the changes:

Ui=0:Uf=mgh:K i=
1
2

mv2 :K f=0

(2) then apply the conservation of energy:

Ui+K i=Uf+K f ⇒0+mgh=0+1
2

mv2⇒h= v2

2g
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Now actually the expression that we’ve used for the gravitational potential  energy is 
really only valid for rather short distances. The actual more complicated expression is 
given by Newton’s law of gravitation which says that for two bodies of mass m1 and m2 

which are separated by a distance r, the gravitation potential energy would be given by:

U=−G
m1m2

r
.

Here G is called the “universal gravitational constant” and has the value

G=6.677x10−11 Nm2

kg2
.

 You can also, from the gravitation force which looks like: 

|⃗F|=G
m1m2

r2

 obtain the acceleration due to gravity:

G
mEm2

RE
2

=m2g⇒g=G
mE

RE
2

by realizing that this is the gravitation force near the surface of the Earth.  

Additional for Calculus Students 

These look alike for a very important reason: for conservative potentials, a force can be 
associated with the potential which is given by 

F⃗=−∇⃗ U  . 
Here, the gradient operator is quite simple:

 ∇⃗=
dU
dr

r̂  ,

as is always the case for spherical symmetry.
Physicists use the negative sign in the connection with force, however mathematicians do 
not. This is, in fact, something you will see near the end of the calculus 3 course. This  
will  only  work for  forces  which are  conservative  (which also  means independent  of 
path). In which case you can do this with the calculation of work:

W≡∮ F⃗⋅ds⃗=∫ F⃗⋅ds⃗
(which means path independence).
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(4)  Distinguish  between  non-conservative  systems  and  conservative  systems.  Then, 
provide a more general definition for work.

In  conservative  systems,  energy  is  conserved  to  within  all  the  variables  we  are 
considering. This also means that the work done depends only upon the initial and final  
states of the system. In non-conservative systems,  we need to consider the particular 
path  taken  by  the  system. Although  energy  is  still  conserved,  our  equations  fail  to 
consider some of the forms of energy. Perhaps the best example of a non-conservative 
system is the work done by a frictional force. Our equations of motion may not consider 
the formation of heat which we will show later is a form of kinetic energy. How much 
heat  is  evolved depends upon the path.  We modify the work-energy theorem for the 
presence of non-conservative forces to appear as:

ΔKnon−conservative=ΔU+ΔKconservative .

Later I’ll show you how to use this. Work is more generally defined for a variable force 
which has a direction in space as:

W=∮ F⃗⋅ds⃗
However, if the force is conservative, remember from above that this becomes: 

W≡∮ F⃗⋅ds⃗=∫ F⃗⋅ds⃗
 where the integral over the path permits the force to change. Here, s represents the path  
(or displacement) and the “dot” is a dot product. Notice that the work can be positive (F 
and s in the same direction), negative (F and s in opposite directions) or zero (F and s are  
at right angles or the initial point and the final point are the same for a conservative 
system).
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(5) Hooke’s law states  F⃗=−k Δ x⃗  (the more you compress a spring, the more the 
spring presses back and in the opposite direction of the compression).  Find the work 
required to compress the spring through a distance  x. Note: k is the spring constant 
measured in N/m in the SI system. You will measure this in lab.

Solution:

There is one more important detail about Hooke’s law: the coordinates in Hooke’s law 
really  must  refer  strictly  to  an amount  of  compression or  expansion.  If  Hooke’s  law 
simply relied upon the coordinate, ridiculous expressions would result. For example, the 
spring would exert more force at one position in space than another point in space. This 
means that the Δ x  that you see in this means a “change in the spring length” and does 
not necessarily refer to the coordinate of the end of the spring.

We can determine the work done for a “linear” force such as this by determination of the  

average  force  which  the  spring  exerts:  F⃗average=−
1
2

k (Δ x⃗ ) provided  the  initial 

compression and the initial force are both zero. The work to compress the spring is then 
given by W=F⃗average⋅(Δ x⃗) . If the initial x position is zero, then we have

W=
1
2

k (x )2 . 

If you now want to refer this strictly to a spatial coordinate, the work would be given by:

W=
1
2

k (Δx )2 .

I recommend that you do every thing possible to make the initial coordinate for x be zero.

But, we have calculus here so let’s do this in the calculus way:

W=∮ F⃗⋅ds⃗=∮Fd(Δx)=∫
Δxi

Δxf

k (Δx ) (dΔx )=∫
0

Δxf

k (Δx ) (dΔ x )=1
2

k (Δx )2

Where I have used the initial compression to be zero.
Now, the next question is what is the potential energy of a spring which was initially at 
zero compression and was then compressed by an amount x. The answer is

Uspring=
1
k

(Δx )2 . 

Suppose a mass m is placed on the compressed spring. After the spring is released, how 
fast will the mass move? Answer: Apply conservation of energy:

Ui=
1
2

k (Δx )2:Uf=0:K i=0:K f=
1
2

m v2  .

This gives:

Ui+K i=Uf+K f ⇒
1
2

kx2+0=0+
1
2

mv2⇒v=±(Δx )√ k
m

.

 .  Which of  the  signs  is  chosen depends  upon the  direction  the  spring  was  initially 
compressed. As a modification, suppose the spring were pointed upward. The spring is 
compressed through a distance x and then released. What is the speed that the mass has 
at the instant it leaves the spring?
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The answer is not so simple mathematically but can still be solved:
1
2

k (Δx )2=mg (Δx )+1
2

mv2⇒v=±√ k
m

(Δx )2−2g (Δx )

One final note: be careful not to confuse K and k in these problems: one is the spring 
constant, the other is kinetic energy.


