Physics 240: UnTest 1

Name: _____

Instructions: You have a total of 50 minutes to complete this test. Answer each question completely showing complete details. For complete credit you must include correct SI units with numerical answers.

Time Start_____ Time finish _____pledged __

Constants: $g=9.8 \frac{m}{s^2}$

[1] A particle is observed to move with an acceleration given by:

$$\vec{a} = 0 \hat{x} + ct^2 \hat{y}$$

where the constant b has SI units of $[c] = [\frac{m}{s^4}]$

- (a) Find the velocity **vector** at a later time assuming at t=0 the vector velocity is zero.
- **(b)** Find the position **vector** at a later time assuming at t=0, the velocity and position are both zero.

Suppose another particle is seen to have a position vector given by:

$$\vec{R}(t) = (-ct^2)\hat{x} + (ft^4 - et^5)\hat{y}$$
,

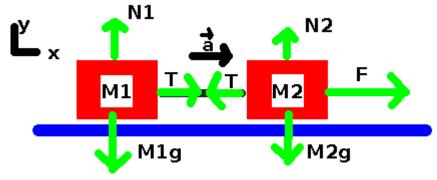
Where the constants c,e,f,and h have SI units of $[c]=[\frac{m}{s^2}],[f]=[\frac{m}{s^4}],[e]=[\frac{m}{s^5}]$.

- (c) Find the velocity vector at a later time.
- **(d)** Find the acceleration **vector** at some later time.

September 9, 2024	Physics 240: UnTest 1	Name:
-------------------	-----------------------	-------

- [2] A ball is thrown upward at an angle of 55° with respect to the horizontal direction with an initial velocity of 5 m/s. Answer the following questions, **providing correct SI units.**
- (a) What is the maximum height to which the ball rises?(b) How long is the ball in the air?(c) What is the range of the ball?(d) What is the impact velocity vector of the ball?

September 9, 2024


Physics 240: UnTest 1 Name:

[3] Consider the following vectors:

$$\vec{A} = 9 \hat{x} + 2 \hat{y} : \vec{B} = -5 \hat{x} + 3 \hat{y} : \vec{C} = 5 \hat{x} - 3 \hat{y}$$

- (a) $\vec{A} + \vec{B} + \vec{C} =$ (b) $\vec{A} \cdot \vec{B} =$
- (c) $|\vec{A} + \vec{B}| =$
- (d) $(\vec{A} + \vec{C}) \cdot \hat{y} =$ _____
- (e) The angle that vector A makes with respect to the positive x-axis. $\theta =$

[4] Two masses resting on a frictionless table are connected by a string and forces are applied as shown. You may assume F1 > F2 here.

(a) In the boxes below, draw complete and correct free body diagrams for this system.

- **(b)** Provide the 4 equations that come from Newton's Laws for this system.
- (c) Find the acceleration of the system in terms of M1, M2, and F.
- (d) Find the tension in the string in terms of M1, M2, and F.
- (e) If M1=2kg, M2=10kg, F=15N, then provide numerical answers for a and T together with correct SI units.

a=______ T=____