Phy240:Unquiz 08	Name:

A wire has a length of 2 m and a total mass of 0.01 kg.

What tension must the wire be under in order to produce a fundamental mode of f=100 Hz when two fixed boundaries exist.

Suppose a spring-mass system has a frequency of 1 Hz. How large must the spring constant be to produce this frequency with a 10 kg mass?

How long must a simple pendulum be at the surface of the earth to produce a frequency of 1 Hz?

Phy240:L	Inauiz (าล
i iiyz io .c	niquiz (,0

Name:

A wire has a length of 2 m and a total mass of 0.01 kg.

What tension must the wire be under in order to produce a fundamental mode of f=100 Hz when (a) two fixed boundaries exist and (b) one fixed and 1 free boundary exists.

$$\begin{split} 2 & \text{fixed BC: } f_1^f \lambda_1^f = v \colon \frac{1}{2} \lambda_1^f = L \Rightarrow \lambda_1^f = 2L \colon \Rightarrow f_1^f = \frac{v}{\lambda_1^f} = \frac{v}{2L} \\ & 2 & \text{free BC: } f_1^u \lambda_1^u = v \colon \frac{1}{4} \lambda_1^u = L \Rightarrow \lambda_1^u = 4L \Rightarrow f_1^u = \frac{v}{4L} \\ & v = \sqrt{\frac{T}{\mu}} \Rightarrow v^2 \mu = T \end{split}$$

$$\begin{split} &\text{fixed:} [2\mathsf{L}\, f_1^f]^2 \!=\! \! \frac{T}{\mu} \!\Rightarrow\! T \!=\! [2\mathsf{L}f_1^f]^2 \mu \!=\! [2x2x100]^2 x0.005 \!=\! 800\,\text{N}\,\text{(hang an 80 kg mass)} \\ &\text{free:} [4\mathsf{L}\, f_1^u]^2 \!=\! \! \frac{T}{\mu} \!\Rightarrow\! T \!=\! [4\mathsf{L}F_1^u]^2 \mu \!=\! [4x2x100]^2 x\,0.005 \!=\! 3200\,\text{N}\,\text{(hang a 320 kg mass)} \end{split}$$

Suppose a spring-mass system has a frequency of 1 Hz. How large must the spring constant be to produce this frequency with a 10 kg mass?

$$\omega = \sqrt{\frac{k}{m}} = 2\pi f \Rightarrow k = [2\pi]^2 m = 395 N$$

How long must a simple pendulum be at the surface of the earth to produce a frequency of 1 Hz?

$$\omega = \sqrt{\frac{g}{L}} = 2\pi f \Rightarrow g = [2\pi f]^2 L \Rightarrow L = \frac{g}{[2\pi f]^2} = \frac{9.8}{[2\pi f]^2} = 0.248 m$$