A ball of mass m is attached to a string of length L. The ball is traveling with an angular velocity $\boldsymbol{\omega}$ in a horizontal plane.

- (a) What is the kinetic energy of the ball in terms of ω , m and L?
- (b) What is the momentum of the ball in terms of m , ω and L.

Now let the string be cut and the ball flies off and has a completely inelastic collision with a mass m (which is the same).

- (c) What is the velocity of the mass combination after the collision in terms of ω , m and L?
- (d) What is the kinetic energy of the mass combination after the collision in terms of ω , m and L?
- (e) Provide numerical answers with correct SI units for the case m=1 kg, L = 1 m and ω =10 "rad"/s.

A ball of mass m is attached to a string of length L. The ball is traveling with an angular velocity ω in a horizontal plane.

- (a) What is the kinetic energy of the ball in terms of ω , m and L?
- (b) What is the momentum of the ball in terms of m , $\boldsymbol{\omega}$ and L.

Now let the string be cut and the ball flies off and has a completely inelastic collision with a mass m (which is the same).

- (c) What is the velocity of the mass combination after the collision in terms of ω , m and L?
- (d) What is the kinetic energy of the mass combination after the collision in terms of ω , m and L?
- (e) Provide numerical answers with correct SI units for the case m=1 kg, L = 1 m and ω =10 "rad"/s.

$$\text{(a)} \quad \omega = 2\pi f = \frac{2\pi}{T} : \Rightarrow T = \frac{2\pi}{\omega} : s = 2\pi L : v_t = \frac{s}{T} = \frac{2\pi L}{\left[\frac{2\pi}{\omega}\right]} = \omega L : K = \frac{1}{2} m v_t^2 \Rightarrow K = \frac{1}{2} m \left[\omega L\right]^2$$

- (b) $v_t = \omega L : p = mv = m\omega L$
- (c) $p_{before} = p_{after} \Rightarrow m v_{before} = 2m v_{after} \Rightarrow v_{after} = \frac{1}{2} v_{before} = \frac{1}{2} \omega L$
- (d) $K_{after} = \frac{1}{2} (2m) \left[\frac{1}{2} \omega L \right]^2 = \frac{1}{4} m (\omega L)^2$
- (e) K=50.0 J: v=10 kg m/s: v=5 m/s: K=25.0 J