November 22, 2024	Physics 240: UnTest 4: Page 1	Name:

Instructions: You have a total of 50 minutes to complete this test. Answer each of the following questions completely providing details and correct SI units.

- [1] An ideal 3 dimensional diatomic gas has the equation of state PV=nRT where n is the number of moles and R=8.314 J/(K mol). You may assume n=1 mole here.
- (a) Calculate c_p for this ideal gas when all 7 degrees of freedom are realized.

For the rest of this problem, assume $c_v=3/2$ R and $c_p=5/2$ R.

(b) Suppose n=1 moles of this gas went through an isothermal process at T=300K which resulted in $V_f=3V_i$ with V_i being the initial volume of the gas. Calculate the following quantities:

$\Delta U =$				
Q =				

(c) Suppose n=1 moles of this gas went through an isobaric process at $P=1.0x10^2$ Pa and the volume changed from 1 m^3 to 3 m^3 . Calculate the following quantities:

	9
$\Delta T =$	
$\Delta U =$	
O=	

November 22, 2024 Physics 240 : UnTest 4 : Page 2	Name:		
[2] An unknown solid material is observed to have a length of 1 m at 0 $^{\circ}$ C and a length of 1.10 m at 100 $^{\circ}$ C.			
(a) What is the coefficient of linear expansion for this material? $\alpha =$			
(b) Another material (not the same material as in part expansion given by $\alpha = 2x10^{-3}$ /C. Calculate the coefficient material assuming the material is isotropic.			
γ=			
For the rest of this problem, assume $\gamma=4x10^{-3}$ /C.	-1 m ³ is heated from 0.00 to		
(c) If a cube of the material in (b) above with a volume $V_0=1$ m ³ is heated from 0 °C to 100 °C, calculate the work done when it expands against a constant pressure of $P=1x10^5$ Pa.			
W=			
(d) Suppose the material in (b) above has a mass of 800 kg and a specific heat of $c_p=2$ J/(kg $^{\circ}$ C). Calculate the heat supplied to the system.			
Q=	d (as in c) and simultaneously		
ΔU=			

November 22, 2024	Physics 240: UnTest 4: Page 3	Name:
[3] A heat engine is re 0° C.	eported to operate with 25 % efficienc	y when the cold reservoir is at
reservoir?	ine follows the Carnot cycle, what is t	he temperature of the hot
T _H = (b) Suppose the heat	 input to this engine was 10 J. Calculat	e the work done by this
engine.	, , , , , , , , , , , , , , , , , , , ,	
W= Suppose the heat	 input to this engine was 10J. Calculate	the heat rejected by this
engine.	input to this engine was 10j. Calculate	tine near rejected by tins
$Q_C = \underline{\hspace{1cm}}$		

November 22, 2024	Physics 240: UnTest 4: Page 4	Name:

- [4] For water, $L_f=3.33x10^5$ J/kg and c=4186 J/Kg $^{\circ}$ C.
- (a) If 4 kg of water at 0°C is mixed with 1 kg of water at 80°C, calculate the final equilibrium temperature of the mixture.

 $T_f =$

- (b) Calculate the change in entropy of the water as a result of the mixing described in part a. Hint: make sure your result is positive. $\Delta S=$
- (c) If a 5 kg mass of ice at 0° C melts to become water at 0° C, calculate the change in entropy of the system.

ΔS=

(d) Suppose 1 kg of a material has the following specific heat:

$$c(T) = 4AT^3$$

Where A has the SI units of J/(kg K⁴). If this material is heated from 2K to 3K, how much heat must be supplied to the material?