
Standing Waves & Vibrations
Revised for 2021
You  may  recall  from  class  that  we  developed  a
method for determination of the resonant frequencies
of oscillation for transverse waves on a string.  Here,
let’s summarize the method.

Suppose a wire is stretched between two rigidly fixed
points.  The wire has a length L.  To find the modes of
oscillation  which  exist  on  this  system,  assume  the
tension in the string is T and the string has a mass
per unit length of μ. The speed of a transverse linear
wave propagating on a medium such as a string is
then given by

v=√T
μ .

The wavelength, frequency and speed for any wave which is linear (and non-lossy) is
given by

f λ=v .

(Important note: do not confuse the symbols T (period) and T (tension))

The v which appears here is the wave speed.  Since our waves are all linear, v does not
depend upon frequency or wavelength, but only upon tension and linear mass density.
Thus,  for  all  modes of  oscillation  which exist  on a string,  so long as the excitations
remain linear, v is the same. However, because in today’s lab we will be changing the
tension, in fact v will change for the different tensions.

Let us impose the condition of 2 fixed boundary conditions upon a
vibrating string, as shown in the following sketches. Further, it is
worth your while to note that if you have a node, this is essentially
a fixed boundary condition.

Since the frequency of wavelength is related by fλ=v, and for the
lowest lying mode, you know that  λ=2L since for this waveform,
you have nodes at each wall.  Thus, the lowest lying frequency is

given by

f1=
v
2L

.

If we want to find the next highest mode of oscillation, we find
that 1 wavelength fits into the length L, so λ=L.  This allows us to
find the frequency of oscillation for this mode to be

f2=
v
L

=2f1 .

It is now easy to show that the nth harmonic will be given by
fn=n f1 ;n=1,2,3 ,.. .  

This is all well and good if you can vary the frequency of an oscillator which is exciting
the string.  In principle, we could also and it will only cost a ridiculous amount of money



per set-up (it involves buying bipolar amplifiers from our favorite source).  Instead, in
today’s lab, we will leave the frequency of oscillation set at 60 Hz, and allow several
modes to arise on the string.  In each case, we will thus have f=60 Hz but by varying the
tension and the mass in the string, we will be able to verify the following connections:

(1) f λ=v

(2) v=√T
μ

In no event in today’s lab should you place more than 250
g  tension  on  your  string,  otherwise  the  oscillator  will  be  deformed
permanently.

We will do the analysis for today's lab using a graphical analysis plotting  λ2  vs. T, the
analysis of which is as follows:
Using equation (1) and (2) we have:

f2
λ

2
=v2

=
T
μ  ⇒  λ2

=
1

f2
μ

T

So if we plot tension vs wavelength squared, a linear fit would provide us with the slope
which then would provide us with the experimental frequency:

fexperimental=√ 1
μx slope

This  can  then  be  compared  to  the  actual  frequency  of  60  Hz.  Some  error  will  be
introduced due to the fact that the mass per unit length of the string will change slightly
as tension is increased.

Experiment  1.  Using  the  gram-spring  scale
connected  to  one  end  of  the  fat  string  and
separate at least 1 meter distance between the
oscillator and the pulley. You will need to measure
the mass of your string and also the total length of
it.
Turn on the oscillator and move the pulley until
the string is slightly slack.  Slowly move the pulley
away  from  the  oscillator  until  a  standing  wave
pattern is observed.  Measure the scale reading
the length of ½ of the wavelength of this standing
wave pattern.  Continue to move the pulley away
from the oscillator and you will obtain a total of 6

measurement locations.  Record the tensions and the length of ½ of the wavelength for
each of these patterns.  You will want to choose a wave closer to the pulley since the
oscillator does not provide us with a true fixed boundary condition.  Calculate the wave

speed,  v=√T
μ  ,for each of these three tensions.  Find the wave length for each of

these patterns ( λ=2λ½ ).  Then you can determine the frequency of oscillation from



f λ=v .  Compare your experimental  frequency to the actual  frequency of  60 Hz by
using the % error. You will find these calculations on the spreadsheet for today’s lab.

Experiment 2: Replace your fat cord with about 3-4 m
of thread. I have a 20 meter section of this thread that
you can weigh in  order to obtain  the mass per unit
length. You’ll need to ask for this.  Connect the other
end of the string to a weight hanger as shown. Once
again, calculate the tension in your thread, and then
calculate  the  velocity  of  a  transverse  wave  from

v=√T
μ .   Find  your  wavelength  and  then  compare

your experimental frequency to the actually oscillator frequency by using the % error.
With a weight hanger and add weights to produce necessary tensions.  Note that in the
spreadsheet, you should enter a length of 20 m if you weight the mass of the 20 m long
thread.

Experiment 3.  In this portion of the lab, you will make direct measurements by timing
the speed of a pulse and compare it to theoretical values. As a big hint, do not put too
much tension on the cord because the pulse will travel faster than you can accurately
time. You and a partner should find a nice long open area and take the cord with you.
You will also need the long tape measure, a spring scale and a stop watch. The idea for
this portion of the lab is to send a pulse down the string and time how long it takes for
this to travel through a length 2L.  Do this twice and you and your partner can share
results. Thus, you can obtain the wave speed directly. Your response time will, of course,
greatly degrade measurement quality here but the point will  still  be made if you are
careful enough. I recommend not applying very much tension to the cable since you will
want the wave speed to be as low as possible here. On the spreadsheet, I have provided
you with the mass of the long string, its unstretched length and also its outstretched
linear mass density. When you stretch the line, this mass density will change: thus you
will need to measure the stretched length. The mass, however will stay the same. You
will  need to  use  the  entire  length  of  the cord  here  in  order  to  get  a  time which  is
significantly larger than your reaction time.

Experiment  4:  I  want  you  to  run  the  simulations  from FA20  Pandemic  lab  largely
because I want you to see what happens if you change frequencies. Use the red
button to make a frequency of 100 Hz.  Set the reflection phase to -1 which will

mean fixed boundary conditions. Change the tension until you have a node at each end
of the cord and two full wavelengths on the screen. Make sure you have nodes at each
end of the string. Leave the mass per unit length at 0.01 kg/m.  Increment the time to
see the time development of the standing wave. Calculate the wave speed by:

v=√Tension
μ .

With 5 nodes total on the string, this corresponds to 4 one half wavelength and so the
frequency here is f4. Confirm that with your tension, and a length of 1 m, you obtain the
wave speed you calculated from above by:

f4λ4=v .
This may not be exactly the same because of small errors in placement of the node on
the right end of the string.



Conclusions and write-up: You should make sure that you completely understand the
roles  played  by  tension,  mass  per  unit  length,  wavelength  and  frequency  in
determination of the frequency of a wave on a string. Your discussion may include a
derivation  of  the  frequencies  for  standing  waves  between  two  rigid  boundaries.
Ultimately,  remember that  the reason you are doing this  lab is  to understand these
concepts so be sure that your writeup reflects you understanding (which is required, of
course to be correct).

One thing that I’d like for you to see from this lab is that for harmonic waves on a long
string, the wave length increases as tension squared (and thus wave speed) increases.
This is explained by the following: imagine a pulse placed on the string. The higher the
wave speed is,  the further the wave can travel  in  the time of one oscillation of  the
oscillator.


