Sample Calculation for Lab 04

Repeat in great detail the following derivation

In the image above, we have the following tensions

$$
\mathrm{T}=\mathrm{mg}: \mathrm{T}_{2}=\mathrm{mg}: \mathrm{T}_{1}=\mathrm{mg} .
$$

We assume that the angle Θ is equally divided up the bisector. So that in fact the angle we will use is divided by 2 , and I will call that φ.

$$
\begin{gathered}
\text { along } \mathrm{x}: \mathrm{T}_{\mathrm{x}}=-\mathrm{T} \sin \phi+\mathrm{T} \sin \phi=0 \\
\text { alongy }: 2 \mathrm{~T}_{\mathrm{y}}-\mathrm{mg}=0 \Rightarrow \mathrm{~T}_{\mathrm{y}}=\frac{\mathrm{mg}}{2}=\mathrm{T} \cos \phi \Rightarrow \cos \phi=\frac{\mathrm{mg}}{2 \mathrm{~T}}
\end{gathered}
$$

But we know that

$$
\mathrm{T}=\mathrm{mg}
$$

because the strings on either side are holding up the same mass m . So:

$$
\cos \phi=\frac{\mathrm{mg}}{2 \mathrm{mg}}=\frac{1}{2} \Rightarrow \phi=60^{\circ}
$$

This gives us the expected angle between the two strings to be a total of $\theta=2 \phi=120^{\circ}$

