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Energy, work and power in physics are defined. Work is a force exerted (on matter)
which is accompanied by a displacement along the direction of the force. By the work-
energy theorem, work produces a change in energy. Power is the rate of doing work.

The first portion of this lab involves simply calculating the work done to walk up a
flight of stairs. One comment regarding notation: in the following notes, s represents
the displacement. I am defining the work done on a system by an external entity
which  is  exerting  a  force  F⃗  on  the  system while  the  system is  undergoing  a
displacement Δ S⃗   in the direction of the applied force as positive. In the analysis
below, I will try to be painfully clear about the various signs involved.

Procedure:
Note: the spread sheet for this portion is WorkPower01

When you walk up stairs, you do work against the gravitational force by exerting a
force on a step. The force (Note: it is in the negative y direction) which you exert to
increase your height is given by:

F⃗on step=mg⃗=−mgŷ

where  m  is  your  mass  and g=+9.8
m
s2

 which  is  the  magnitude of  the  vector

acceleration due to gravity. This required force is slightly higher than this in order to
ascend (or slightly lower in order to descend). In the SI system, the mass is in units of
Kg. The step accelerates in the -y direction since,  according to Newton's  law, the
acceleration is in the direction of the force. This acceleration is very small because of
the large mass of the earth. The step, according to Newton's third law, exerts an
equal and opposite force on you (in the positive y direction) and is given by:

F⃗from step=−mg⃗=+ mgŷ .

The step does an amount of work on your body which is given by:

W=F⃗⋅(Δ y⃗)= (−(−mgŷ))⋅(y⃗final−y⃗ initial).
If  (y⃗final−y⃗initial)>0 ,in which case you are climbing the stairs, then the work done on
your  body would  be positive,  resulting  in  an increase of  your  potential  energy.  If
(y⃗final−y⃗initial)<0 , in which case you are descending, the work done on your body

would be negative, resulting in a decrease of your potential energy.

In general, note that the work on a body due to a force from an external agent is:
Non-calculus Calculus
W=∑

path

F⃗⋅Δ s⃗i

i is a segment over which F is constant

W= ∮
path

F⃗⋅ds⃗

If  the  force  is  conservative,  a  class  of  forces  including  gravitational  forces  and
electrostatic forces, then the work done is independent of the path. If the force is non-



conservative,  of  which  friction  is  an  example,  then  the  work  done  against  non-
conservative forces depends upon the path. For our purposes today, we will consider
that the body is only working against the conservative force of gravity. In this case,
the work required reduces to:

Non-calculus Calculus
W=∑ F⃗⋅(Δ x⃗i)

i is a segment over which F is constant W= ∫
xinitial

xfinal

F⃗⋅dx⃗

Both forms become very simple in the additional case of a constant force:

W=F⃗⋅(Δ s⃗) .

Notice that work is a scalar while force and displacement are both vectors. This is
important in understanding that the step may do positive work or negative work on
your body, depending upon the sign of the displacement vector, Δ s⃗ . Also note that
work is not a conserved quantity: there is no such thing as ΔW. 

By the work-energy theorem, this work results in a change in energy. In the case of
walking up stairs, what has changed is potential energy. Thus the change in potential
energy would be given by: 

ΔU=W=mg(Δy) .

Work, potential energy (and kinetic energy) have units of Joules (J) in the SI system.
The power exerted by the external agent in a time Δt is the rate of doing work which
is:

Power=
ΔU
Δ t

=
W
Δ t

.

In the SI system, power has units of Watts (W). Be sure not to confuse Work (W) with
the SI unit Watts (W). Each is understood in the context of usage.

Later in the class, we will discuss impulse, however it is convenient to introduce this
now.  It  is  also  possible  to  calculate  the impulse  delivered.  The impulse  (SI  units:
Newton Seconds (N s) ) is defined as 

J⃗=F⃗averageΔ t   (non-calculus)  or  J⃗=∫ F⃗dt (calculus).

Both  Joules  and  impulse  have  the  same  symbol  but  the  symbol  has  different
meanings. Again, you must understand the symbol in the context of usage.

When your body does work, this comes at the expense of electrostatic energy stored
in the form of chemical bonds. While it is easy to calculate the energy expenditures in
climbing stairs, it is not so easy to calculate this when descending. In our lab today,
we will ignore the descending calculations.



Procedure

The spreadsheet calculations here are in WorkPowerEnergy.

Measure the height of a step, then count the number of steps from the basement of
the Derby Center to the second floor. Weigh yourself (before and after).  Walk up and
down the steps at a constant rate, using a stopwatch to time yourself. Do this for four
different trip times and calculate the power expended in Watts for each trip. If your
graph shows a sudden funny behavior, I have found that students resolve this by
remembering that a time reading on the stopwatch of 1:20, for example, means 80 s.

The energy which must be expended in walking to the second floor is given by:
U=mgh=mg(# steps X height of 1 step)

Height of a step (m) h
# steps total to 2nd floor #
Body mass (kg) m
Energy expended in ascent U=mg(#h)

Power calculations
Trip number Time (s) for trip up stairs Power (U/t) expended (Watts)
1
2
3
4

Analysis
Your analysis for this portion of the lab is completed by understanding how to do the
appropriate calculations to complete the tables above. Be sure to read time correctly,
especially if your graph shows sudden discontinuities. A similar method is used to
calculate metabolism.

Mechanical Advantage
The spreadsheet to calculate this portion of the lab is MechanicalAdvantage1.

You  should measure the tensions at the same time as you measure Δx1  as
described below.

One  very  important  observation  for  this  section  is  the  following:  With  the  string
looping  through  the  hook  on  mass  m1,  when  the  string  is  pulled,  complete  the
following table for the 3 situations when the free end (the end connected to m2 ) of
the string is pulled through a distance of 0.05 m. Note that if you have a mass m2 on
the free end, this part of the experiment proceeds the same, it's just not "free".

Number of strings
connected to mass

m1

N

mass: m1
change in height (cm)

Δx1

Free end: (the end
connected to m2)

change in position (cm)

Δx2

1 -5
3 -5
5 -5



How to find Δx1 and Δx2

In the image,  there is a hanging mass (the (about) 50 g mass) which I am
calling 1 here. Make a mark on the string from the other end. Set a meter
stick on the floor. When the mark on the other end of the string is pulled
through a distance enough to lift mass m1 by 10 cm , measure how far the
mass  (m2)  lowers  by  measuring  from a  position  on  the  weight  hanger
holding the mass. If energy is conserved, you expect that

∣m1 Δx1∣=∣m2Δx2∣ .

You will measure the tension in the free end by hanging a mass hanger on it and
placing weights on it until (a)M1 does not fall down (giving "m2 minimum" ) and then
(b) by placing more weights on m2 until the mass M1 starts to raise up (giving "m2

maximum"). 
Verify that the system conserves energy

In an ideal world (no friction in the pulleys, for example), we expect that the amount
of energy we put into the system (in the form of work with will be given here by 

Win=TΔx2

will be equal to the amount of work that the system does, which is given by

W=NTmΔx

where the the tensions are T=tension in the free end) and Tm =tension in any one
string holding up the mass.

The fact that the strings are not exactly straight up and down also makes a slight
inaccuracy  here..  The  spreadsheet  will  calculate  a  % difference  between the  two
calculated works using the average m2. We could calculate these tensions by finding
the angles that the strings make. However assuming that the angles are fairly small
here sidesteps that problem.

Analysis and understanding

Consider the following problem: A point mass (m) is held up by a
string. What is the tension in the string?

Clearly, the tension is T=mg. 

Now  double  the  string  in  a  funny  way:  imagine  cutting  it  and
attaching  it  to  the  mass  as  shown.  What  is  the  tension  in  each
segment now?

Clearly,  the total tension in each string must add up to the total
weight being suspended. The tension is equally divided between the
two segments. Thus, the tension in each string is now T=1/2 mg.



I believe now it is easy to see that if this process is continued you can see that the
tension in each segment when there are N total segments would be given by:

T=
mg
N

.

Now suppose that one of the segments of string were cut and you were required to
provide the tension that the upper holder was previously providing. How much force
would you need to supply if there were N segments? Again the answer is:

T=
mg
N

This is the basis for understanding mechanical advantage and we’ll experiment with it
using  pulleys  to  verify  this  behavior.  The  ultimate  consequence  of  mechanical
advantage is that it takes much less force to hold up or lift an object than the actual
weight of the object provided that your rope and pulley system is designed correctly.
A correct design in a world filled with friction pretty much requires that each rope
segment be wound over a pulley. We will modify this slightly. However, you really
already know this since you know that to make a rope twice as strong you
double it.

Procedure
Your mass-pulley system should look something like what I  have
shown below. My  experience says that you will probably need to
watch an example of how to thread your strings to make this work.

Follow the instructions given earlier for finding m2 maximum and m2

minimum. Also find  Δx2 for each of  the 3 loops when  Δx1=5 cm.
Note: 1 refers to the (about) 50g mass  and 2 refers to the
free end of the string. Also note that you measure  Δx by
measurements  from the  bottom of  the  mass hanger.  You
have a total of 2 numbers for each measurement. Subtract
the two numbers for Δx . This gives then Δx1  and Δx2 . If
energy is conserved, then 

F1Δx1=F2 Δx2

which could be said “work in = work out.” You will raise M1 by 10 cm each
time for 1 loop, 3 loops and 5 loops, measuring how much M2 lowers each
time.

The calculations for this, and also that the work in is equal to the work out (which it
will not be due to friction) are in the spreadsheet named MechanicalAdvantage1. Your
results will  not be exactly correct,  though, for other reasons as is shown, in part,
below where the angle the string make has a strong influence on the tension in the
string.



A more complicated simple machine

The spreadsheet calculations here are contained in
MechanicalAdvantage2. Although in the image, I
show weight  hangers  with attached masses,
in fact all you will need are masses which are
identical  and  we  will  calibrate  this  in  terms  of
those units of mass. The masses are simply large
nuts that are identical.  Hence, the mass unit is
NMU (nut mass unit).
Arrange your system as shown. The large hanger is
in  the  center  initially  and  at  the  top.  Allow  the
central mass to fall until the system stops moving.

Measure the angle  Θ. The strings are thread and to achieve equilibrium, raise the
central mass and then drop it.

You do not need to weigh the masses here. . If the weights are the same, then the
system will  be highly symmetric.  (You can test this for yourself by putting 1
NMU on the central mass and perhaps a 5 g hanger and dropping the mass
again). You may need to rearrange the spacing between the pulleys for this
to work. An analysis of the forces present with the angles measured would
actually permit a calibration of the weight of 1 NMU in terms of g. Doing so,
however, is not part of today's lab. Note also that if you put 2 NMUs on the center, the
analysis fails. 

We want to analyze the forces present. A free body diagram for the system is shown
below. Note that this is your first problem from the field of “statics.”

The analysis:

∑ F⃗=ma⃗

X:mgsin ( θ

2
)−mgsin( θ

2
)=0

Y :2mgcos( θ
2

)−Mg=0

⇒cos( θ
2

)=
M

2m
⇒θ=2cos-1

(
M

2m
)

In particular, if M and m are the same, then
the angle is given by:

θ=2cos-1
(
1
2

)=2x 600
=1200.

Analysis  is  provided  in  the  spreadsheet  for  this  calculation  named
MechanicalAdvantage2.  You  should  measure  the  angle,  M,  and  m   (in  terms  of
NMUs ... you do not need to weigh the nuts) in order to complete this portion of the
lab. Friction will, of course, distort the results some so do not expect perfect results
here. I found, however, that the results were quite close.



Atwood’s machine

In  class,  we  have  seen  how Atwood’s  machine  works,  and
have  done  the  analysis  on  it.  If  you  will  recall,  Atwood’s
machine  consists  of  a  single  pulley  with  two  masses.  I
recommend using the NMUs here for simplicity.

From the analysis in class assuming m1 is greater than m2, you
can determine the acceleration of this system which is given
by:

a=
m1−m2

m1+m2

g

In previous versions of this lab, Atwood’s machine was used to measure the value of g
but errors associated with friction, the inertial of the pulley, and timing prevent very
good measurements from resulting. In a later lab, we will later be able to measure g
with the simple pendulum. Today, however, I want you to construct Atwood’s machine
and observe several situations only. In particular, I want you to observe what happens
when the two masses are equal, and I also want you to observe what happens when
m1 is larger than m2 and also what happens when m2 is larger than m1. In particular,
you  should  note  the  amount  of  time  required  for  the  mass  to  move  through  a
specified distance and relate this to the acceleration. Your analysis on this part is
permitted to be in the form of a narrative detailing the analysis (from class)
of the Atwood’s machine and also your observations.


